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The goal of this project is to derive a learned regularizer for image reconstruction by approxi-
mating the manifold of patches by a mixture of generative models. Below, we describe the project
in detail, structuring it in three consecutive steps.

1 Manifold Approximation with Mixtures of VAEs

Background We are given data points x1, ..., xN ∈ Rn and assume that the elements of the
datasets are located on an embedded d-dimensional submanifold M ⊆ Rn with d ≪ n, which is
often true in practice (for image datasets this assumption is known as the “manifold hypothesis”,
see, e.g., [3]). In this project, we aim to learn this manifold and consider related applications. A
common approach for manifold learning is to train an injective neural network D : Rd → Rn and
represent M ≈ Range(D). To derive a loss function, we can use an adaption of the change-of-
variables formula from normalizing flows [7, 6, 8], or we interpret D as the decoder of a variational
autoencoder [5]. However, this approach can only approximate manifolds that admit a global
parametrization, which is not true for disconnected manifolds or manifolds with holes. As a remedy,
we can approximate M by a mixture model of VAEs, where each decoder represents (the inverse
of) a chart from the manifold [1].

Objective Replace the mixture of VAEs in [1] by a mixture of injective free form flows [8], which
directly approximate the likelihood of each generator and do not have such tight architectural
constraints. Try a state-of-the-art architecture for image generation and examine whether this
alternative architecture improves generation quality.

2 Approximating the Patch-Manifolds

Background We consider the dataset of all p×p (possibly overlapping) patches from some image
dataset. In [4] the authors observe that for 3 × 3 patches of gray-valued images, this dataset is
located on a two-dimensional manifold with non-trivial topology.

Objective Approximate this manifold by a mixture of VAEs (or other architectures, see previous
task) and find out the topology of this manifold by considering which charts overlap at the boundary.
Can the claims from [4] be reproduced numerically? What happens for p ≥ 4? Is the topology the
same as for 3× 3 patches?

∗Machine Learning Genoa Center (MaLGa), Department of Mathematics, University of Genoa
†Department of Computer Science, University College London

1



3 Patch-based Regularizers

Background Once we have approximated the manifold of all patches in a certain image dataset,
we want to apply this approach to define a regularizer which can be used for image reconstruction in
inverse problems. Our goal is to reconstruct an unknown image x from an observation y generated
as

y = noisy(F (x)),

where F is a non-invertible or ill-posed forward operator. A common approach for reconstructing
x is to minimize the

x̂ ∈ argmin
x

d(F (x), y) + λR(x),

where the first term measures the consistency of x with the observed data y, and the second term
incorporates some prior knowledge. Following the approaches of the expected patch log-likelihood
regularizer (EPLL [9]) and patch normalizing flow regularizer (patchNR [2]), we aim to define a
regularizer

R(x) = −
N∑
i=1

log(p(Pi(x))),

where Pi extracts the i-th patch from x and p is the density function of the patch distribution. Of
course, this requires that we have learned the patch-distribution a-priori.

Objective While EPLL [9] learns the patch distribution p as a Gaussian mixture model and the
patchNR [2] as a normalizing flow, we now want to insert our manifold approximation from the
previous task as p. Can we improve the results of EPLL/patchNR?
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