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Introduction

(Time harmonic) Maxwell’s equations have the form
VxH=1iE+J, in Q,
Vx E=—iuH in Q,
Exv=0 on 99,

Giovanni S. Alberti (Oxford University) Regularity for Maxwell's equations

6th SW PDE Winter School

2/9



Introduction

(Time harmonic) Maxwell’s equations have the form
VxH=1iE+J, in Q,
Vx E=—iuH in Q,
Exv=0 on 99,

where
> QO CR3: CV! bounded domain;
» E,H € H(curl, Q) = {u € L*(Q;C3) : V x u € L*(;C3)}: electric and
magnetic fields;

> &, € L (€;C**3) with uniformly positive definite real parts: electric
permittivity and magnetic permeability;
» J. € L?(Q;C?), divJ, = 0: current source.
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Introduction

(Time harmonic) Maxwell’s equations have the form
VxH=1iE+J, in Q,
Vx E=—iuH in Q,
Exv=0 on 99,

where
> QO CR3: CV! bounded domain;
» E,H € H(curl, Q) = {u € L*(Q;C3) : V x u € L*(;C3)}: electric and
magnetic fields;

> &, € L (€;C**3) with uniformly positive definite real parts: electric
permittivity and magnetic permeability;
» J. € L?(Q;C?), divJ, = 0: current source.

Problem

What assumptions on ¢ and p imply
1. E,Hecw"(Q)?
2. E,HeC%(Q)?
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Some history

VxH=icE+ J. in Q,
V X E =—iuH in Q,

e, € L (Q;C*>?), E,H € H(curl, Q).

» 1955, Friedrichs: if uw € L?, V x u € L? and divu € L? then u € Wh2;
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Some history

VxH=icE+J, in,
VxE=—igH inQ,

e, € L (Q;C*>?), E,H € H(curl, Q).

» 1955, Friedrichs: if u € L?, V x u € L? and divu € L? then u € W'?;
» 1981, Weber: if e,u € W1 then E,H € W'?
(divE = —e~'Ve - E € L?);
in particular, if e, u € W2 then E, H € C"%;
> 1990s, Costabel, Dauge... : boundary regularity;
» 2004, Yin: if ¢ € Wh then E € C%;

"The assumption of Lipschitz continuity is necessary and the regularity result is optimal"
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Some history

VxH=iE+J, inqQ,
VxE=—igH inQ,

e, € L (Q;C*>?), E,H € H(curl, Q).

» 1955, Friedrichs: if w € L?, V x u € L? and divu € L? then u € Wh?;
» 1981, Weber: if e,u € W1 then E,H € W'?
(divE = —e~'Ve - FE € L?);
in particular, if &, 1 € W2 then E, H € C";
> 1990s, Costabel, Dauge... : boundary regularity;
» 2004, Yin: if e € W' then E € C;
"The assumption of Lipschitz continuity is necessary and the regularity result is optimal"
» 2012, Fernandes et al.: case of bianisotropic material
VxH=i(eE+EH)+ J. in Q,
VXxE=—i(CE+ pH) in Q.
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» 1955, Friedrichs: if w € L?, V x u € L? and divu € L? then u € Wh?;
» 1981, Weber: if e,u € W1 then E,H € W'?
(divE = —e~'Ve - FE € L?);

in particular, if &, 1 € W2 then E, H € C";
> 1990s, Costabel, Dauge... : boundary regularity;
» 2004, Yin: if e € W' then E € C;

"The assumption of Lipschitz continuity is necessary and the regularity result is optimal"
» 2012, Fernandes et al.: case of bianisotropic material

VxH=i(eE+EH)+ J. in Q,
VxE=—i(CE+puH) inQ.

With ad-hoc techniques (40 pages): if ¢,&,(,u € W1 then E, H € C"“.

Giovanni S. Alberti (Oxford University) Regularity for Maxwell's equations 6th SW PDE Winter School 3/9




Some history

VxH=iE+J, inqQ,
VxE=—ipH inQ,

e, € L (Q;C*>?), E,H € H(curl, Q).

> 1055, Friedrichs: if w € L2, V x u € L? and divu € L? then u € W?;
> 1981, Weber: if ¢,u € W then E, H € W2
(divE = —e~'Ve - FE € L?);

in particular, if &, 1 € W2 then E, H € C";
> 1990s, Costabel, Dauge... : boundary regularity;
> 2004, Yin: if ¢ € W1 then E € C"%;

"The assumption of Lipschitz continuity is necessary and the regularity result is optimal"
» 2012, Fernandes et al.: case of bianisotropic material

VxH=i(eE+EH)+ Je in Q,
VxE=—i(CE+puH) inQ.

With ad-hoc techniques (40 pages): if ¢,&,(,u € W1 then E, H € C"“.

Can we do better? J
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Maxwell's equations — coupled elliptic system

VxH=icE+J, inQ,
Vx E=—iuH in Q,
These equations can be easily rewritten as a coupled elliptic system (Leis, 1986):

{ —div (eVE;) = div((0ke) E + € (e, x ipH))  in Q,
—div (uVH) = div((Opp)H — 1 (ex x (Je + icE))) in Q.
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Maxwell's equations — coupled elliptic system

VxH=1iFE+J, in Q,
Vx E=—iuH in Q,

These equations can be easily rewritten as a coupled elliptic system (Leis, 1986):

{ —div (eVE;) = div((0ke) E + € (e, x ipH))  in Q,
—div (uVH) = div((Opp)H — 1 (ex x (Je + icE))) in Q. J

As Ey, H;, ¢ W12, these equations have to be interpreted in a “very weak” sense:

/ Epdiv (V@) dz = / (8k<,5)5E'1/ds+/ ((Ore)E + ¢ (e x iuH))-Vpdr,
Q o9 Q

for any ¢ € W22(); C).
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Maxwell's equations — coupled elliptic system

VxH=1iFE+J, in Q,
Vx E=—iuH in Q,

These equations can be easily rewritten as a coupled elliptic system (Leis, 1986):

{ —div (eVE;) = div((0ke) E + € (e, x ipH))  in Q,
—div (uVH) = div((Opp)H — 1 (ex x (Je + icE))) in Q. J

As Ey, H;, ¢ W12, these equations have to be interpreted in a “very weak” sense:

/ Epdiv (V@) dz = / (Gk@)sE'yder/ ((Ore)E + ¢ (e x iuH))-Vpdr,
Q o9 Q

for any p € W22(Q;C).

Lemma (“very weak” implies “weak” - LP theory for elliptic equations)
Suppose e € C°. Takep € [6/5,00), u € L> N LP and F € LP. If
—div(eVu) = divF in Q

in a very weak sense, then u € WhP.
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Case p =2

{ —div (eVE;) = div((0ke) E + € (e x ipH))  in Q,
—div (uVH) = div((Opp)H — p(ex x (Je + ieE))) in Q.

Lemma: if e € C% F € L? and

—div(eVu) = divF very weakly

then v € Wh2.
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Case p =2

{ —div (eVE;) = div((0ke) E + ¢ (e x ipH))  in Q,
—div (uVH;) = div((Owp)H — 1 (ex, x (Je + icE))) in Q.

Lemma: if e € C% F € L? and

—div(eVu) = divF very weakly

then v € Wh2.

» Suppose €, € W, Then /' € L2,
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Case p =2

—div (eVE;) = div((0ke) E + € (), x ipH)) in Q,
—div (uVHy) = div((([);‘f/l,)H — p(er x (Jo + IEE))) in Q.

Lemma: if e € C% F € L? and

—div(eVu) = divF” very weakly

then v € Wh2.

» Suppose €, € W, Then /' € L2,
» By the Lemma we obtain Ey, H, € W2, namely E, H ¢ W2
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Case p =2

—div (eVE;) = div((0ke) E + € (), x ipH)) in Q,
—div (uVHy) = diV(<6)1‘¢/1>H — p(er x (Jo + ISE))) in Q.

Lemma: if e € C% F € L? and
—div(eVu) = divF” very weakly
then v € Wh2.

» Suppose €, € W, Then /' € L2,
» By the Lemma we obtain Ey, H, € W2, namely E, H ¢ W2
» By Sobolev embedding E, H € L%, whence /' € LS.
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It seems that the TW1'>° assumption is necessary to obtain Fe L? .
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Case p =2

—div (eVE;) = div((0ke) E + € (), x ipH)) in Q,
—div (uVHy) = div(((‘),‘./l)H —p(er x (Je + l:E))) in Q.

Lemma: if e € CY, F € L? and
—div(eVu) = divF” very weakly

then v € Wh2.

» Suppose €, € W, Then /' € L2,
» By the Lemma we obtain Ey, H, € W2, namely E, H ¢ W2

» By Sobolev embedding E, H € L%, whence /' € LS.
» Finally, by De Giorgi-Nash we obtain £, H € C":*,

It seems that the TW1'>° assumption is necessary to obtain Fe L? .

Is it possible to improve this result by using the LP theory?
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Main result

{ —div (eVE;) = div((0ke) E + € (), x ipH)) in Q,
—div (uVH;) = div((Owp)H — 1 (ex x (Je + icE))) in Q.

Lemma: if e € CY, F € L and
—div(eVu) = divF very weakly

then uw € Whr,
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Main result

—div (eVE;) = div((0ke) E + € (), x ipH)) in Q,
—div (uVH;) = div((Owp)H — 1 (ex x (Je + icE))) in Q.

Lemma: if ¢ € C°, F € LP and
—div(eVu) = divF very weakly
then v e Whp,

Theorem

Ife, ;€ WH3H9 for some 6 > 0, then E, H € W2,
Moreover, if J, € W131+9 then E,H € C"°.
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Main result
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then v € WhP.

Theorem

Ife, ;€ WH3H9 for some 6 > 0, then E, H € W2,
Moreover, if J, € W3t9 then E, H € .

» For simplicity, let us focus on E and remove the quantity ¢ (e x iuH).
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Main result

{ —div(eVE;) =div((0e) E)  in Q,

Lemma: if e € CY, F € L? and
—div(eVu) = divF very weakly

then u € Whp,

Theorem

Ife, ;€ WH3H9 for some 6 > 0, then E, H € W2,
Moreover, if J, € W3t9 then E, H € .

» For simplicity, let us focus on E and remove the quantity ¢ (e x iuH).

> Start with: E € L?, pe € L*Y — F € LP, with p = &2
» Apply Lemma: £ € WP C L9, with ¢ = 3p(3 — p) L.
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Main result

{ —div (eVE;) = div((02) E) in Q,

Lemma: if e € CY, F € L? and
—div(eVu) = divF very weakly
then v € WP,

Theorem

Ife, ;€ WH3H9 for some 6 > 0, then E, H € W2,
Moreover, if J, € W3t9 then E, H € .

» For simplicity, let us focus on E and remove the quantity ¢ (e x iuH).

> Start with: E € L?, pe € L*Y — F € LP, with p = &2

» Apply Lemma: F € WP C L4, with ¢ = 3p(3 — p)~L.

> There holds E' € L7 with ¢ = 2+ £ > 2.
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Main result

{ —div (eVE;) = div((02) E) in Q,

Lemma: if e € CY, F € L? and
—div(eVu) = divF very weakly
then v € WP,

Theorem

Ife, ;€ WH3H9 for some 6 > 0, then E, H € W2,
Moreover, if J, € W3t9 then E, H € .

» For simplicity, let us focus on E and remove the quantity ¢ (e x iuH).

> Start with: E € L?, pe € L*Y — F € LP, with p = &2

» Apply Lemma: £ € WLP C L9, with ¢ = 3p(3 —p) L.
> There holds E' € L7 with ¢ = 2+ £ > 2.
» Bootstrap!
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Main result

{ —div (eVE;) = div((02) E) in Q,

Lemma: if e € CY, F € L? and
—div(eVu) = divF very weakly
then v € WP,

Theorem

Ife, ;€ WH3H9 for some 6 > 0, then E, H € W2,
Moreover, if J, € W3t9 then E, H € .

» For simplicity, let us focus on E and remove the quantity ¢ (e x iuH).

> Start with: E € L?, pe € L*Y — F € LP, with p = &2

v

Apply Lemma: E € WP C L4, with ¢ = 3p(3 — p)~L.

There holds E € L9 with ¢ = 2+ 2% > 2.

Bootstrap! Note: § > 0 is optimal for this argument.

v

v
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Comments

» Same result if only e € W!'3%% and p € L (Q; R**3): obtain E € C%~.

Giovanni S. Alberti (Oxford University) Regularity for Maxwell's equations



Comments

» Same result if only e € W!'3%% and p € L (Q; R**3): obtain E € C%~.
» Boundary regularity is shown by carefully inspecting the very weak form

/ Eydiv (e"VQ) dx :/ (Op@)eE - vds + / ((Ore)E + ¢ (ep x iuH)) - Vpda.
Q o9 )
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Comments

> Same result if only e € W19 and € L™ (Q;R3*3): obtain E € C.
» Boundary regularity is shown by carefully inspecting the very weak form

/ Eydiv (e"VQ) dx :/ (Op@)eE - vds + / ((Ore)E + ¢ (ep x iuH)) - Vpda.
Q o9 )

» The case of bianisotropic materials can be studied in the same way, by
considering the elliptic system
—div (eVEy + EVH) = div ((0kge)E + (0r€) H + ic (e x (CE + pH)))
+div (=€ (e x (ieE 4+ iH + J,))) in Q.
—div ((VEy + uVHy) = div ((0xQ)E + (Orp) H — pu (eg x (ieE 4+ i£H + J.)))
+div (¢ (er x (iCE + ipH))) in Q.
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» The case of bianisotropic materials can be studied in the same way, by
considering the elliptic system
—div (eVEy + EVH) = div ((0kge)E + (0r€) H + ic (e x (CE + pH)))
+div (=€ (e x (ieE 4+ iH + J,))) in Q.
—div ((VEy + uVHy) = div ((0xQ)E + (Orp) H — pu (eg x (ieE 4+ i£H + J.)))
+div (¢ (er x (iCE + ipH))) in Q.

We get: if €,&,¢, € WH3H9 then B, H € ¢,
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Comments

> Same result if only e € W19 and € L™ (Q;R3*3): obtain E € C.
» Boundary regularity is shown by carefully inspecting the very weak form

/ Eydiv (e"VQ) dx :/ (Op@)eE - vds + / ((Ore)E + ¢ (ep x iuH)) - Vpda.
Q o9 )

» The case of bianisotropic materials can be studied in the same way, by
considering the elliptic system
—div (eVEy + EVH) = div ((0kge)E + (0r€) H + ic (e x (CE + pH)))
+div (=€ (e x (ieE 4+ iH + J,))) in Q.
—div ((VEy + uVHy) = div ((0xQ)E + (Orp) H — pu (eg x (ieE 4+ i£H + J.)))
+div (¢ (er x (iCE + ipH))) in Q.

We get: if €,&,¢, u € W39 then B, H € .

» Higher regularity results can be easily obtained.
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Conclusions

Past

> The regularity theory for Maxwell's equations has been studied mainly with
ad-hoc techniques

> The assumption € € W1 was believed to be optimal to have E € C%*
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Conclusions

Past

> The regularity theory for Maxwell's equations has been studied mainly with
ad-hoc techniques

> The assumption € € W1 was believed to be optimal to have E € C%*

Present

» The LP theory for elliptic equations can be easily applied to Maxwell’s
equations

» Main result: e,p € W3 — E H e C"®

» Same result for bianisotropic materials, no need to develop a different
approach
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Conclusions

Past

> The regularity theory for Maxwell's equations has been studied mainly with
ad-hoc techniques

> The assumption € € W1 was believed to be optimal to have E € C%*

Present

» The LP theory for elliptic equations can be easily applied to Maxwell’s
equations

» Main result: e,p € W3 — E H e C"®
» Same result for bianisotropic materials, no need to develop a different
approach

Future

» Is W13+9 the optimal assumption? Probably not! (ongoing work with Jan
Kristensen)
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Thank you for your attention!

[@ G.S. Alberti and Y. Capdeboscq.
Elliptic regularity theory applied to time harmonic anisotropic Maxwell's
equations with less than Lipschitz complex coefficients.
Siam J. Math. Anal., to appear.
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