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Introduction
(Time harmonic) Maxwell's equations have the form ∇×H = iεE + Je in Ω,

∇× E = −iµH in Ω,
E × ν = 0 on ∂Ω,

where
I Ω ⊆ R3: C1,1 bounded domain;
I E,H ∈ H(curl,Ω) = {u ∈ L2(Ω;C3) : ∇× u ∈ L2(Ω;C3)}: electric and

magnetic �elds;
I ε, µ ∈ L∞

(
Ω;C3×3

)
with uniformly positive de�nite real parts: electric

permittivity and magnetic permeability;
I Je ∈ L2(Ω;C3), divJe = 0: current source.

Problem

What assumptions on ε and µ imply

1. E,H ∈W 1,2(Ω)?

2. E,H ∈ C0,α(Ω)?
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Some history {
∇×H = iεE + Je in Ω,
∇× E = −iµH in Ω,

ε, µ ∈ L∞
(
Ω;C3×3

)
, E,H ∈ H(curl,Ω).

I 1955, Friedrichs: if u ∈ L2, ∇× u ∈ L2 and divu ∈ L2 then u ∈W 1,2;
I 1981, Weber: if ε, µ ∈W 1,∞ then E,H ∈W 1,2

(divE = −ε−1∇ε · E ∈ L2);

in particular, if ε, µ ∈W 2,∞ then E,H ∈ C0,α;
I 1990s, Costabel, Dauge... : boundary regularity;
I 2004, Yin: if ε ∈W 1,∞ then E ∈ C0,α;

"The assumption of Lipschitz continuity is necessary and the regularity result is optimal"

I 2012, Fernandes et al.: case of bianisotropic material{
∇×H = i (εE + ξH) + Je in Ω,
∇× E = −i (ζE + µH) in Ω.

With ad-hoc techniques (40 pages): if ε, ξ, ζ, µ ∈W 1,∞ then E,H ∈ C0,α.

Can we do better?
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Maxwell's equations −→ coupled elliptic system{
∇×H = iεE + Je in Ω,
∇× E = −iµH in Ω,

These equations can be easily rewritten as a coupled elliptic system (Leis, 1986):{
−div (ε∇Ek) = div

(
(∂kε)E + ε (ek × iµH)

)
in Ω,

−div (µ∇Hk) = div
(
(∂kµ)H − µ (ek × (Je + iεE))

)
in Ω.

As Ek, Hk /∈W 1,2, these equations have to be interpreted in a �very weak� sense:�
Ω

Ekdiv
(
εT∇ϕ̄

)
dx =

�
∂Ω

(∂kϕ̄)εE ·ν ds+

�
Ω

((∂kε)E + ε (ek × iµH)) ·∇ϕ̄ dx,

for any ϕ ∈W 2,2(Ω;C).

Lemma (�very weak� implies �weak� - Lp theory for elliptic equations)

Suppose ε ∈ C0. Take p ∈ [6/5,∞), u ∈ L2 ∩ Lp and F ∈ Lp. If

−div(ε∇u) = divF in Ω

in a very weak sense, then u ∈W 1,p.
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Case p = 2

{
−div (ε∇Ek) = div

(
(∂kε)E + ε (ek × iµH)

)
in Ω,

−div (µ∇Hk) = div
(
(∂kµ)H − µ (ek × (Je + iεE))

)
in Ω.

Lemma: if ε ∈ C0, F ∈ L2 and

−div(ε∇u) = divF very weakly

then u ∈W 1,2.

I Suppose ε, µ ∈W 1,∞. Then F ∈ L2.

I By the Lemma we obtain Ek, Hk ∈W 1,2, namely E,H ∈W 1,2.

I By Sobolev embedding E,H ∈ L6, whence F ∈ L6.

I Finally, by De Giorgi-Nash we obtain E,H ∈ C0,α.

It seems that the W 1,∞ assumption is necessary to obtain F∈ L2 .

Is it possible to improve this result by using the Lp theory?
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Main result{
−div (ε∇Ek) = div

(
(∂kε)E + ε (ek × iµH)

)
in Ω,

−div (µ∇Hk) = div
(
(∂kµ)H − µ (ek × (Je + iεE))

)
in Ω.

Lemma: if ε ∈ C0, F ∈ Lp and

−div(ε∇u) = divF very weakly

then u ∈W 1,p.

Theorem

If ε, µ ∈W 1,3+δ for some δ > 0, then E,H ∈W 1,2.

Moreover, if Je ∈W 1,3+δ then E,H ∈ C0,α.

I For simplicity, let us focus on E and remove the quantity ε (ek × iµH).

I Start with: E ∈ L2, ∂kε ∈ L3+δ =⇒ F ∈ Lp, with p = 6+2δ
5+δ .

I Apply Lemma: E ∈W 1,p ⊆ Lq, with q = 3p(3− p)−1.

I There holds E ∈ Lq with q = 2 + 2δ
9+δ > 2.

I Bootstrap! Note: δ > 0 is optimal for this argument.
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Comments

I Same result if only ε ∈W 1,3+δ and µ ∈ L∞
(
Ω;R3×3

)
: obtain E ∈ C0,α.

I Boundary regularity is shown by carefully inspecting the very weak form�
Ω

Ekdiv
(
εT∇ϕ̄

)
dx =

�
∂Ω

(∂kϕ̄)εE · νds+

�
Ω

((∂kε)E + ε (ek × iµH)) · ∇ϕ̄dx.

I The case of bianisotropic materials can be studied in the same way, by
considering the elliptic system
−div (ε∇Ek + ξ∇Hk) = div ((∂kε)E + (∂kξ)H + iε (ek × (ζE + µH)))

+div (−ξ (ek × (iεE + iξH + Je))) in Ω.
−div (ζ∇Ek + µ∇Hk) = div ((∂kζ)E + (∂kµ)H − µ (ek × (iεE + iξH + Je)))

+div (ζ (ek × (iζE + iµH))) in Ω.

We get: if ε, ξ, ζ, µ ∈W 1,3+δ then E,H ∈ C0,α.

I Higher regularity results can be easily obtained.
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Conclusions

Past

I The regularity theory for Maxwell's equations has been studied mainly with
ad-hoc techniques

I The assumption ε ∈W 1,∞ was believed to be optimal to have E ∈ C0,α

Present

I The Lp theory for elliptic equations can be easily applied to Maxwell's
equations

I Main result: ε, µ ∈W 1,3+δ =⇒ E,H ∈ C0,α

I Same result for bianisotropic materials, no need to develop a di�erent
approach

Future

I Is W 1,3+δ the optimal assumption? Probably not! (ongoing work with Jan
Kristensen)
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Thank you for your attention!

G. S. Alberti and Y. Capdeboscq.
Elliptic regularity theory applied to time harmonic anisotropic Maxwell's
equations with less than Lipschitz complex coe�cients.
Siam J. Math. Anal., to appear.
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