Elliptic regularity theory applied to time harmonic Maxwell's equations

> Giovanni S. Alberti (Joint work with Yves Capdeboscq)

OxPDE, Mathematical Institute, University of Oxford

6 th South West Regional PDE Winter School, 16-17 January 2014

Introduction

(Time harmonic) Maxwell's equations have the form

$$
\begin{cases} \nabla \times H = i\varepsilon E + J_e & \text{in } \Omega, \\ \nabla \times E = -i\mu H & \text{in } \Omega, \\ E \times \nu = 0 & \text{on } \partial\Omega, \end{cases}
$$

where

- $\blacktriangleright \Omega \subseteq \mathbb{R}^3$: $C^{1,1}$ bounded domain;
- $\blacktriangleright E, H \in H(\mathrm{curl}, \Omega) = \{u \in L^2(\Omega; \mathbb{C}^3): \nabla \times u \in L^2(\Omega; \mathbb{C}^3)\}$: electric and
- $\blacktriangleright \varepsilon, \mu \in L^\infty\left(\Omega; \mathbb{C}^{3 \times 3}\right)$ with uniformly positive definite real parts: electric
- $\blacktriangleright\;J_e\in L^2(\Omega;\mathbb{C}^3),\,\mathop{\rm div} J_e=0$: current source.

What assumptions on ε and μ imply

1. $E, H \in W^{1,2}(\Omega)$? 2. $E, H \in C^{0,\alpha}(\Omega)$?

Giovanni S. Alberti (Oxford University) [Regularity for Maxwell's equations](#page-0-0)

Introduction

(Time harmonic) Maxwell's equations have the form

$$
\begin{cases} \nabla \times H = i\varepsilon E + J_e & \text{in } \Omega, \\ \nabla \times E = -i\mu H & \text{in } \Omega, \\ E \times \nu = 0 & \text{on } \partial\Omega, \end{cases}
$$

where

- $\blacktriangleright \Omega \subseteq \mathbb{R}^3$: $C^{1,1}$ bounded domain;
- $E, H \in H(\text{curl}, \Omega) = \{u \in L^2(\Omega; \mathbb{C}^3) : \nabla \times u \in L^2(\Omega; \mathbb{C}^3) \}$: electric and magnetic fields;
- $\blacktriangleright \varepsilon, \mu \in L^\infty\left(\Omega; \mathbb{C}^{3 \times 3}\right)$ with uniformly positive definite real parts: electric permittivity and magnetic permeability;
- $J_e \in L^2(\Omega;\mathbb{C}^3)$, $\mathrm{div} J_e = 0$: current source.

What assumptions on ε and μ imply

1. $E, H \in W^{1,2}(\Omega)$? 2. $E, H \in C^{0,\alpha}(\Omega)$?

Giovanni S. Alberti (Oxford University) [Regularity for Maxwell's equations](#page-0-0)

Introduction

(Time harmonic) Maxwell's equations have the form

$$
\begin{cases} \nabla \times H = i\varepsilon E + J_e & \text{in } \Omega, \\ \nabla \times E = -i\mu H & \text{in } \Omega, \\ E \times \nu = 0 & \text{on } \partial\Omega, \end{cases}
$$

where

- $\blacktriangleright \Omega \subseteq \mathbb{R}^3$: $C^{1,1}$ bounded domain;
- $E, H \in H(\text{curl}, \Omega) = \{u \in L^2(\Omega; \mathbb{C}^3) : \nabla \times u \in L^2(\Omega; \mathbb{C}^3) \}$: electric and magnetic fields;
- $\blacktriangleright \varepsilon, \mu \in L^\infty\left(\Omega; \mathbb{C}^{3 \times 3}\right)$ with uniformly positive definite real parts: electric permittivity and magnetic permeability;
- $J_e \in L^2(\Omega;\mathbb{C}^3)$, $\mathrm{div} J_e = 0$: current source.

Problem

What assumptions on ε and μ imply

1. $E, H \in W^{1,2}(\Omega)$? 2. $E, H \in C^{0,\alpha}(\Omega)$?

Giovanni S. Alberti (Oxford University) [Regularity for Maxwell's equations](#page-0-0)

$$
\begin{cases}\n\nabla \times H = i\varepsilon E + J_e & \text{in } \Omega, \\
\nabla \times E = -i\mu H & \text{in } \Omega,\n\end{cases}
$$
\n
$$
\varepsilon, \mu \in L^{\infty} (\Omega; \mathbb{C}^{3 \times 3}), \quad E, H \in H(\text{curl}, \Omega).
$$

▶ 1955, Friedrichs: if $u \in L^2$, $\nabla \times u \in L^2$ and $\mathrm{div} u \in L^2$ then $u \in W^{1,2}$; \blacktriangleright 1981, Weber: if $\varepsilon, \mu \in W^{1,\infty}$ then $E, H \in W^{1,2}$ $(\text{div} E = -\varepsilon^{-1} \nabla \varepsilon \cdot E \in L^2);$

in particular, if $\varepsilon, \mu \in W^{2,\infty}$ then $E, H \in C^{0,\alpha};$

▶ 1990s, Costabel, Dauge... : boundary regularity;

► 2004, Yin: if $\varepsilon \in W^{1,\infty}$ then $E \in C^{0,\alpha}$; "The assumption of Lipschitz continuity is necessary and the regularity result is optimal"

2012. Fernandes et al.: case of bianisotropic material

$$
\nabla \times H = i(\varepsilon E + \xi H) + J_e \quad \text{in } \Omega,
$$

$$
\nabla \times E = -i(\zeta E + \mu H) \quad \text{in } \Omega.
$$

$$
\begin{cases} \nabla \times H = i\varepsilon E + J_e & \text{in } \Omega, \\ \nabla \times E = -i\mu H & \text{in } \Omega, \end{cases}
$$

$$
\varepsilon, \mu \in L^{\infty} (\Omega; \mathbb{C}^{3 \times 3}), \quad E, H \in H(\text{curl}, \Omega).
$$

▶ 1955, Friedrichs: if $u \in L^2$, $\nabla \times u \in L^2$ and $\mathrm{div} u \in L^2$ then $u \in W^{1,2}$; 1981, Weber: if $\varepsilon, \mu \in W^{1,\infty}$ then $E, H \in W^{1,2}$

 $(\text{div} E = -\varepsilon^{-1} \nabla \varepsilon \cdot E \in L^2);$

in particular, if $\varepsilon, \mu \in W^{2,\infty}$ then $E, H \in C^{0,\alpha};$

▶ 1990s, Costabel, Dauge... : boundary regularity;

► 2004, Yin: if $\varepsilon \in W^{1,\infty}$ then $E \in C^{0,\alpha}$; "The assumption of Lipschitz continuity is necessary and the regularity result is optimal"

2012. Fernandes et al.: case of bianisotropic material

$$
\nabla \times H = i(\varepsilon E + \xi H) + J_e \quad \text{in } \Omega,
$$

$$
\nabla \times E = -i(\zeta E + \mu H) \quad \text{in } \Omega.
$$

$$
\begin{cases} \nabla \times H = i\varepsilon E + J_e & \text{in } \Omega, \\ \nabla \times E = -i\mu H & \text{in } \Omega, \end{cases}
$$

$$
\varepsilon, \mu \in L^{\infty} (\Omega; \mathbb{C}^{3 \times 3}), \quad E, H \in H(\text{curl}, \Omega).
$$

▶ 1955, Friedrichs: if $u \in L^2$, $\nabla \times u \in L^2$ and $\mathrm{div} u \in L^2$ then $u \in W^{1,2}$; 1981, Weber: if $\varepsilon, \mu \in W^{1,\infty}$ then $E, H \in W^{1,2}$

$$
(\text{div} E = -\varepsilon^{-1} \nabla \varepsilon \cdot E \in L^2);
$$

in particular, if $\varepsilon, \mu \in W^{2,\infty}$ then $E, H \in C^{0,\alpha};$

▶ 1990s, Costabel, Dauge... : boundary regularity;

► 2004, Yin: if $\varepsilon \in W^{1,\infty}$ then $E \in C^{0,\alpha}$; "The assumption of Lipschitz continuity is necessary and the regularity result is optimal"

 \triangleright 2012, Fernandes et al.: case of bianisotropic material

$$
\begin{cases} \nabla \times H = i \left(\varepsilon E + \xi H \right) + J_e & \text{in } \Omega, \\ \nabla \times E = -i \left(\zeta E + \mu H \right) & \text{in } \Omega. \end{cases}
$$

$$
\begin{cases} \nabla \times H = i\varepsilon E + J_e & \text{in } \Omega, \\ \nabla \times E = -i\mu H & \text{in } \Omega, \end{cases}
$$

$$
\varepsilon, \mu \in L^{\infty} (\Omega; \mathbb{C}^{3 \times 3}), \quad E, H \in H(\text{curl}, \Omega).
$$

▶ 1955, Friedrichs: if $u \in L^2$, $\nabla \times u \in L^2$ and $\mathrm{div} u \in L^2$ then $u \in W^{1,2}$; 1981, Weber: if $\varepsilon, \mu \in W^{1,\infty}$ then $E, H \in W^{1,2}$

$$
(\text{div} E = -\varepsilon^{-1} \nabla \varepsilon \cdot E \in L^2);
$$

in particular, if $\varepsilon,\mu\in W^{2,\infty}$ then $E,H\in C^{0,\alpha},$

▶ 1990s, Costabel, Dauge... : boundary regularity;

► 2004, Yin: if $\varepsilon \in W^{1,\infty}$ then $E \in C^{0,\alpha}$;

"The assumption of Lipschitz continuity is necessary and the regularity result is optimal"

 \triangleright 2012, Fernandes et al.: case of bianisotropic material

$$
\nabla \times H = i(\varepsilon E + \xi H) + J_e \quad \text{in } \Omega,
$$

$$
\nabla \times E = -i(\zeta E + \mu H) \quad \text{in } \Omega.
$$

$$
\begin{cases} \nabla \times H = i\varepsilon E + J_e & \text{in } \Omega, \\ \nabla \times E = -i\mu H & \text{in } \Omega, \end{cases}
$$

$$
\varepsilon, \mu \in L^{\infty} (\Omega; \mathbb{C}^{3 \times 3}), \quad E, H \in H(\text{curl}, \Omega).
$$

▶ 1955, Friedrichs: if $u \in L^2$, $\nabla \times u \in L^2$ and $\mathrm{div} u \in L^2$ then $u \in W^{1,2}$; 1981, Weber: if $\varepsilon, \mu \in W^{1,\infty}$ then $E, H \in W^{1,2}$

$$
(\text{div} E = -\varepsilon^{-1} \nabla \varepsilon \cdot E \in L^2);
$$

in particular, if $\varepsilon,\mu\in W^{2,\infty}$ then $E,H\in C^{0,\alpha},$

^I 1990s, Costabel, Dauge... : boundary regularity;

► 2004, Yin: if $\varepsilon \in W^{1,\infty}$ then $E \in C^{0,\alpha}$;

"The assumption of Lipschitz continuity is necessary and the regularity result is optimal"

 \triangleright 2012, Fernandes et al.: case of bianisotropic material

$$
\nabla \times H = i(\varepsilon E + \xi H) + J_e \quad \text{in } \Omega,
$$

$$
\nabla \times E = -i(\zeta E + \mu H) \quad \text{in } \Omega.
$$

$$
\begin{cases} \nabla \times H = i\varepsilon E + J_e & \text{in } \Omega, \\ \nabla \times E = -i\mu H & \text{in } \Omega, \end{cases}
$$

$$
\varepsilon, \mu \in L^{\infty} (\Omega; \mathbb{C}^{3 \times 3}), \quad E, H \in H(\text{curl}, \Omega).
$$

▶ 1955, Friedrichs: if $u \in L^2$, $\nabla \times u \in L^2$ and $\mathrm{div} u \in L^2$ then $u \in W^{1,2}$; \blacktriangleright 1981, Weber: if $\varepsilon, \mu \in W^{1,\infty}$ then $E, H \in W^{1,2}$

$$
(\text{div} E = -\varepsilon^{-1} \nabla \varepsilon \cdot E \in L^2);
$$

in particular, if $\varepsilon,\mu\in W^{2,\infty}$ then $E,H\in C^{0,\alpha},$

▶ 1990s, Costabel, Dauge.... boundary regularity;

► 2004, Yin: if $\varepsilon \in W^{1,\infty}$ then $E \in C^{0,\alpha}$, "The assumption of Lipschitz continuity is necessary and the regularity result is optimal"

 \triangleright 2012. Fernandes et al.: case of bianisotropic material

$$
\nabla \times H = i(\varepsilon E + \xi H) + J_e \quad \text{in } \Omega,
$$

$$
\nabla \times E = -i(\zeta E + \mu H) \quad \text{in } \Omega.
$$

$$
\begin{cases} \nabla \times H = i\varepsilon E + J_e & \text{in } \Omega, \\ \nabla \times E = -i\mu H & \text{in } \Omega, \end{cases}
$$

$$
\varepsilon, \mu \in L^{\infty} (\Omega; \mathbb{C}^{3 \times 3}), \quad E, H \in H(\text{curl}, \Omega).
$$

▶ 1955, Friedrichs: if $u \in L^2$, $\nabla \times u \in L^2$ and $\mathrm{div} u \in L^2$ then $u \in W^{1,2}$; \blacktriangleright 1981, Weber: if $\varepsilon, \mu \in W^{1,\infty}$ then $E, H \in W^{1,2}$

$$
(\text{div} E = -\varepsilon^{-1} \nabla \varepsilon \cdot E \in L^2);
$$

in particular, if $\varepsilon,\mu\in W^{2,\infty}$ then $E,H\in C^{0,\alpha},$

▶ 1990s, Costabel, Dauge.... boundary regularity;

► 2004, Yin: if $\varepsilon \in W^{1,\infty}$ then $E \in C^{0,\alpha}$, "The assumption of Lipschitz continuity is necessary and the regularity result is optimal"

 \triangleright 2012. Fernandes et al.: case of bianisotropic material

$$
\begin{cases} \nabla \times H = i \left(\varepsilon E + \xi H \right) + J_e & \text{in } \Omega, \\ \nabla \times E = -i \left(\zeta E + \mu H \right) & \text{in } \Omega. \end{cases}
$$

$$
\begin{cases} \nabla \times H = i\varepsilon E + J_e & \text{in } \Omega, \\ \nabla \times E = -i\mu H & \text{in } \Omega, \end{cases}
$$

$$
\varepsilon, \mu \in L^{\infty} (\Omega; \mathbb{C}^{3 \times 3}), \quad E, H \in H(\text{curl}, \Omega).
$$

▶ 1955, Friedrichs: if $u \in L^2$, $\nabla \times u \in L^2$ and $\mathrm{div} u \in L^2$ then $u \in W^{1,2}$; \blacktriangleright 1981, Weber: if $\varepsilon, \mu \in W^{1,\infty}$ then $E, H \in W^{1,2}$

$$
(\text{div} E = -\varepsilon^{-1} \nabla \varepsilon \cdot E \in L^2);
$$

in particular, if $\varepsilon,\mu\in W^{2,\infty}$ then $E,H\in C^{0,\alpha},$

- ▶ 1990s, Costabel, Dauge.... boundary regularity;
- ► 2004, Yin: if $\varepsilon \in W^{1,\infty}$ then $E \in C^{0,\alpha}$, "The assumption of Lipschitz continuity is necessary and the regularity result is optimal"
- \triangleright 2012. Fernandes et al.: case of bianisotropic material

$$
\begin{cases} \nabla \times H = i \left(\varepsilon E + \xi H \right) + J_e & \text{in } \Omega, \\ \nabla \times E = -i \left(\zeta E + \mu H \right) & \text{in } \Omega. \end{cases}
$$

$$
\begin{cases} \nabla \times H = i\varepsilon E + J_e & \text{in } \Omega, \\ \nabla \times E = -i\mu H & \text{in } \Omega, \end{cases}
$$

$$
\varepsilon, \mu \in L^{\infty} (\Omega; \mathbb{C}^{3 \times 3}), \quad E, H \in H(\text{curl}, \Omega).
$$

▶ 1955, Friedrichs: if $u \in L^2$, $\nabla \times u \in L^2$ and $\mathrm{div} u \in L^2$ then $u \in W^{1,2}$; \blacktriangleright 1981, Weber: if $\varepsilon, \mu \in W^{1,\infty}$ then $E, H \in W^{1,2}$

$$
(\text{div} E = -\varepsilon^{-1} \nabla \varepsilon \cdot E \in L^2);
$$

in particular, if $\varepsilon,\mu\in W^{2,\infty}$ then $E,H\in C^{0,\alpha},$

- ▶ 1990s, Costabel, Dauge.... boundary regularity;
- ► 2004, Yin: if $\varepsilon \in W^{1,\infty}$ then $E \in C^{0,\alpha}$, "The assumption of Lipschitz continuity is necessary and the regularity result is optimal"
- \triangleright 2012. Fernandes et al.: case of bianisotropic material

$$
\begin{cases} \nabla \times H = i \left(\varepsilon E + \xi H \right) + J_e & \text{in } \Omega, \\ \nabla \times E = -i \left(\zeta E + \mu H \right) & \text{in } \Omega. \end{cases}
$$

With ad-hoc techniques (40 pages): if $\varepsilon,\xi,\zeta,\mu\in W^{1,\infty}$ then $E,H\in C^{0,\alpha}$.

Can we do better?

Maxwell's equations \longrightarrow coupled elliptic system

$$
\begin{cases} \nabla \times H = i\varepsilon E + J_e & \text{in } \Omega, \\ \nabla \times E = -i\mu H & \text{in } \Omega, \end{cases}
$$

These equations can be easily rewritten as a coupled elliptic system (Leis, 1986):

$$
\begin{cases}\n-\text{div}(\varepsilon \nabla E_k) = \text{div}((\partial_k \varepsilon) E + \varepsilon (\mathbf{e}_k \times i\mu H)) & \text{in } \Omega, \\
-\text{div}(\mu \nabla H_k) = \text{div}((\partial_k \mu) H - \mu (\mathbf{e}_k \times (J_e + i\varepsilon E))) & \text{in } \Omega.\n\end{cases}
$$

As $E_k, H_k \notin W^{1,2}$, these equations have to be interpreted in a "very weak" sense:

 $\int_{\Omega} E_k \text{div} \left(\varepsilon^T \nabla \overline{\varphi} \right) \, dx = \int_{\Omega}$ $\int_{\partial\Omega}(\partial_k\bar{\varphi})\varepsilon E\cdot\nu\,ds+\int_{\Omega}$ $\frac{d}{d\Omega}((\partial_k \varepsilon)E + \varepsilon (\mathbf{e}_k \times i\mu H)) \cdot \nabla \bar{\varphi} dx,$ for any $\varphi \in W^{2,2}(\Omega; \mathbb{C})$.

Suppose $\varepsilon \in C^0$. Take $p \in [6/5, \infty)$, $u \in L^2 \cap L^p$ and $F \in L^p$. If $-\text{div}(\varepsilon \nabla u) = \text{div} F$ in Ω

in a very weak sense, then $u \in W^{1,p}$.

Maxwell's equations \longrightarrow coupled elliptic system

$$
\begin{cases} \nabla \times H = i\varepsilon E + J_e & \text{in } \Omega, \\ \nabla \times E = -i\mu H & \text{in } \Omega, \end{cases}
$$

These equations can be easily rewritten as a coupled elliptic system (Leis, 1986):

$$
\begin{cases}\n-\text{div}(\varepsilon \nabla E_k) = \text{div}((\partial_k \varepsilon) E + \varepsilon (\mathbf{e}_k \times i\mu H)) & \text{in } \Omega, \\
-\text{div}(\mu \nabla H_k) = \text{div}((\partial_k \mu) H - \mu (\mathbf{e}_k \times (J_e + i\varepsilon E))) & \text{in } \Omega.\n\end{cases}
$$

As $E_k, H_k \notin W^{1,2}$, these equations have to be interpreted in a ''very weak'' sense:

$$
\int_{\Omega} E_k \operatorname{div} \left(\varepsilon^T \nabla \bar{\varphi} \right) dx = \int_{\partial \Omega} (\partial_k \bar{\varphi}) \varepsilon E \cdot \nu \, ds + \int_{\Omega} \left((\partial_k \varepsilon) E + \varepsilon (\mathbf{e}_k \times i\mu H) \right) \cdot \nabla \bar{\varphi} \, dx,
$$

for any $\varphi \in W^{2,2}(\Omega; \mathbb{C})$.

Suppose $\varepsilon \in C^0$. Take $p \in [6/5, \infty)$, $u \in L^2 \cap L^p$ and $F \in L^p$. If $-\text{div}(\varepsilon \nabla u) = \text{div} F$ in Ω

in a very weak sense, then $u \in W^{1,p}$.

Maxwell's equations \longrightarrow coupled elliptic system

$$
\begin{cases} \nabla \times H = i\varepsilon E + J_e & \text{in } \Omega, \\ \nabla \times E = -i\mu H & \text{in } \Omega, \end{cases}
$$

These equations can be easily rewritten as a coupled elliptic system (Leis, 1986):

$$
\begin{cases}\n-\text{div}(\varepsilon \nabla E_k) = \text{div}((\partial_k \varepsilon) E + \varepsilon (\mathbf{e}_k \times i\mu H)) & \text{in } \Omega, \\
-\text{div}(\mu \nabla H_k) = \text{div}((\partial_k \mu) H - \mu (\mathbf{e}_k \times (J_e + i\varepsilon E))) & \text{in } \Omega.\n\end{cases}
$$

As $E_k, H_k \notin W^{1,2}$, these equations have to be interpreted in a ''very weak'' sense:

$$
\int_{\Omega} E_k \text{div} \left(\varepsilon^T \nabla \bar{\varphi} \right) dx = \int_{\partial \Omega} (\partial_k \bar{\varphi}) \varepsilon E \cdot \nu \, ds + \int_{\Omega} \left((\partial_k \varepsilon) E + \varepsilon \left(\mathbf{e}_k \times i \mu H \right) \right) \cdot \nabla \bar{\varphi} \, dx,
$$

for any $\varphi \in W^{2,2}(\Omega; \mathbb{C}).$

Lemma ("very weak" implies "weak" - L^p theory for elliptic equations) Suppose $\varepsilon \in C^0$. Take $p \in [6/5, \infty)$, $u \in L^2 \cap L^p$ and $F \in L^p$. If $-\text{div}(\varepsilon \nabla u) = \text{div} F$ in Ω

in a very weak sense, then $u \in W^{1,p}$.

$$
\begin{cases}\n-\text{div}(\varepsilon \nabla E_k) = \text{div}((\partial_k \varepsilon) E + \varepsilon (\mathbf{e}_k \times i\mu H)) & \text{in } \Omega, \\
-\text{div}(\mu \nabla H_k) = \text{div}((\partial_k \mu) H - \mu (\mathbf{e}_k \times (J_e + i\varepsilon E))) & \text{in } \Omega.\n\end{cases}
$$

Lemma: if $\varepsilon\in C^0$, $F\in L^2$ and

 $-\text{div}(\varepsilon\nabla u) = \text{div}F$ very weakly

then $u \in W^{1,2}$

- ► Suppose $\varepsilon, \mu \in W^{1,\infty}$. Then $F \in L^2$.
- ▶ By the Lemma we obtain $E_k, H_k \in W^{1,2}$, namely $E, H \in W^{1,2}$.
- ▶ By Sobolev embedding $E,H\in L^6$, whence $F\in L^6.$
- ► Finally, by De Giorgi-Nash we obtain $E, H \in C^{0,\alpha}.$

It seems that the $W^{1,\infty}$ assumption is necessary to obtain $\mathsf{F} \mathsf{\in} L^2$.

$$
\begin{cases}\n-\text{div}(\varepsilon \nabla E_k) = \text{div}((\partial_k \varepsilon) E + \varepsilon (\mathbf{e}_k \times i\mu H)) & \text{in } \Omega, \\
-\text{div}(\mu \nabla H_k) = \text{div}((\partial_k \mu) H - \mu (\mathbf{e}_k \times (J_e + i\varepsilon E))) & \text{in } \Omega.\n\end{cases}
$$

Lemma: if $\varepsilon\in C^0$, $F\in L^2$ and

 $-\text{div}(\varepsilon\nabla u)=\text{div}F$ very weakly

then $u\in W^{1,2}$

- ► Suppose $\varepsilon, \mu \in W^{1,\infty}$. Then $F \in L^2$.
- ▶ By the Lemma we obtain $E_k, H_k \in W^{1,2}$, namely $E, H \in W^{1,2}$.
- ▶ By Sobolev embedding $E,H\in L^6$, whence $F\in L^6.$
- ► Finally, by De Giorgi-Nash we obtain $E, H \in C^{0,\alpha}.$

It seems that the $W^{1,\infty}$ assumption is necessary to obtain $\mathsf{F} \mathsf{\in} L^2$.

$$
\begin{cases}\n-\text{div}(\varepsilon \nabla E_k) = \text{div}((\partial_k \varepsilon) E + \varepsilon (\mathbf{e}_k \times i\mu H)) & \text{in } \Omega, \\
-\text{div}(\mu \nabla H_k) = \text{div}((\partial_k \mu) H - \mu (\mathbf{e}_k \times (J_e + i\varepsilon E))) & \text{in } \Omega.\n\end{cases}
$$

Lemma: if $\varepsilon\in C^0$, $F\in L^2$ and

 $-\text{div}(\varepsilon\nabla u)=\text{div}F$ very weakly

then $u\in W^{1,2}$

Suppose $\varepsilon, \mu \in W^{1,\infty}$. Then $F \in L^2$.

▶ By the Lemma we obtain $E_k, H_k \in W^{1,2}$, namely $E, H \in W^{1,2}$.

▶ By Sobolev embedding $E,H\in L^6$, whence $F\in L^6.$

► Finally, by De Giorgi-Nash we obtain $E, H \in C^{0,\alpha}.$

It seems that the $W^{1,\infty}$ assumption is necessary to obtain $\mathsf{F} \mathsf{\in} L^2$.

$$
\begin{cases}\n-\text{div}(\varepsilon \nabla E_k) = \text{div}((\partial_k \varepsilon) E + \varepsilon (\mathbf{e}_k \times i\mu H)) & \text{in } \Omega, \\
-\text{div}(\mu \nabla H_k) = \text{div}((\partial_k \mu) H - \mu (\mathbf{e}_k \times (J_e + i\varepsilon E))) & \text{in } \Omega.\n\end{cases}
$$

Lemma: if $\varepsilon\in C^0$, $F\in L^2$ and

 $-\text{div}(\varepsilon\nabla u)=\text{div}F$ very weakly

then $u\in W^{1,2}$

- Suppose $\varepsilon, \mu \in W^{1,\infty}$. Then $F \in L^2$.
- ► By the Lemma we obtain $E_k, H_k \in W^{1,2}$, namely $E, H \in W^{1,2}$.
- ▶ By Sobolev embedding $E,H\in L^6$, whence $F\in L^6.$
- ► Finally, by De Giorgi-Nash we obtain $E, H \in C^{0,\alpha}.$

It seems that the $W^{1,\infty}$ assumption is necessary to obtain $\mathsf{F} \mathsf{\in} L^2$.

$$
\begin{cases}\n-\text{div}(\varepsilon \nabla E_k) = \text{div}((\partial_k \varepsilon) E + \varepsilon (\mathbf{e}_k \times i\mu H)) & \text{in } \Omega, \\
-\text{div}(\mu \nabla H_k) = \text{div}((\partial_k \mu) H - \mu (\mathbf{e}_k \times (J_e + i\varepsilon E))) & \text{in } \Omega.\n\end{cases}
$$

Lemma: if $\varepsilon\in C^0$, $F\in L^2$ and

 $-\text{div}(\varepsilon\nabla u)=\text{div}F$ very weakly

then $u\in W^{1,2}$

- Suppose $\varepsilon, \mu \in W^{1,\infty}$. Then $F \in L^2$.
- ► By the Lemma we obtain $E_k, H_k \in W^{1,2}$, namely $E, H \in W^{1,2}$.
- ► By Sobolev embedding $E, H \in L^6$, whence $F \in L^6$.
- ► Finally, by De Giorgi-Nash we obtain $E, H \in C^{0,\alpha}.$

It seems that the $W^{1,\infty}$ assumption is necessary to obtain $\mathsf{F} \mathsf{\in} L^2$.

$$
\begin{cases}\n-\text{div}(\varepsilon \nabla E_k) = \text{div}((\partial_k \varepsilon) E + \varepsilon (\mathbf{e}_k \times i\mu H)) & \text{in } \Omega, \\
-\text{div}(\mu \nabla H_k) = \text{div}((\partial_k \mu) H - \mu (\mathbf{e}_k \times (J_e + i\varepsilon E))) & \text{in } \Omega.\n\end{cases}
$$

Lemma: if $\varepsilon\in C^0$, $F\in L^2$ and

 $-\text{div}(\varepsilon\nabla u)=\text{div}F$ very weakly

then $u\in W^{1,2}$

- Suppose $\varepsilon, \mu \in W^{1,\infty}$. Then $F \in L^2$.
- ► By the Lemma we obtain $E_k, H_k \in W^{1,2}$, namely $E, H \in W^{1,2}$.
- ► By Sobolev embedding $E, H \in L^6$, whence $F \in L^6$.
- \blacktriangleright Finally, by De Giorgi-Nash we obtain $E,H\in C^{0,\alpha}$.

It seems that the $W^{1,\infty}$ assumption is necessary to obtain $\mathsf{F} \mathsf{\in} L^2$.

$$
\begin{cases}\n-\text{div}(\varepsilon \nabla E_k) = \text{div}((\partial_k \varepsilon) E + \varepsilon (\mathbf{e}_k \times i\mu H)) & \text{in } \Omega, \\
-\text{div}(\mu \nabla H_k) = \text{div}((\partial_k \mu) H - \mu (\mathbf{e}_k \times (J_e + i\varepsilon E))) & \text{in } \Omega.\n\end{cases}
$$

Lemma: if $\varepsilon\in C^0$, $F\in L^2$ and

 $-\text{div}(\varepsilon\nabla u)=\text{div}F$ very weakly

then $u\in W^{1,2}$

- Suppose $\varepsilon, \mu \in W^{1,\infty}$. Then $F \in L^2$.
- ► By the Lemma we obtain $E_k, H_k \in W^{1,2}$, namely $E, H \in W^{1,2}$.
- ► By Sobolev embedding $E, H \in L^6$, whence $F \in L^6$.
- \blacktriangleright Finally, by De Giorgi-Nash we obtain $E,H\in C^{0,\alpha}$.

It seems that the $W^{1,\infty}$ assumption is necessary to obtain $\mathsf{F}\!\in L^2$.

$$
\begin{cases}\n-\text{div}(\varepsilon \nabla E_k) = \text{div}((\partial_k \varepsilon) E + \varepsilon (\mathbf{e}_k \times i\mu H)) & \text{in } \Omega, \\
-\text{div}(\mu \nabla H_k) = \text{div}((\partial_k \mu) H - \mu (\mathbf{e}_k \times (J_e + i\varepsilon E))) & \text{in } \Omega.\n\end{cases}
$$

Lemma: if $\varepsilon\in C^0$, $F\in L^2$ and

 $-\text{div}(\varepsilon\nabla u)=\text{div}F$ very weakly

then $u\in W^{1,2}$

- Suppose $\varepsilon, \mu \in W^{1,\infty}$. Then $F \in L^2$.
- ► By the Lemma we obtain $E_k, H_k \in W^{1,2}$, namely $E, H \in W^{1,2}$.
- ► By Sobolev embedding $E, H \in L^6$, whence $F \in L^6$.
- \blacktriangleright Finally, by De Giorgi-Nash we obtain $E,H\in C^{0,\alpha}$.

It seems that the $W^{1,\infty}$ assumption is necessary to obtain $\mathsf{F}\!\in L^2$.

$$
\begin{cases}\n-\text{div}(\varepsilon \nabla E_k) = \text{div}((\partial_k \varepsilon) E + \varepsilon (\mathbf{e}_k \times i\mu H)) & \text{in } \Omega, \\
-\text{div}(\mu \nabla H_k) = \text{div}((\partial_k \mu) H - \mu (\mathbf{e}_k \times (J_e + i\varepsilon E))) & \text{in } \Omega.\n\end{cases}
$$

Lemma: if $\varepsilon \in C^0$, $F \in L^p$ and

 $-\text{div}(\varepsilon\nabla u) = \text{div}F$ very weakly

then $u\in W^{1,p}$

- For simplicity, let us focus on E and remove the quantity ε ($\mathbf{e}_k \times i\mu$ H).
- ► Start with: $E \in L^2$, $\partial_k \varepsilon \in L^{3+\delta} \implies F \in L^p$, with $p = \frac{6+2\delta}{5+\delta}$.
- ▶ Apply Lemma: $E \in W^{1,p} \subseteq L^q$, with $q = 3p(3-p)^{-1}$.
- ► There holds $E \in L^q$ with $q = 2 + \frac{2\delta}{9+\delta} > 2$.
- **Bootstrap!** Note: $\delta > 0$ is optimal for this argument.

$$
\begin{cases}\n-\text{div}(\varepsilon \nabla E_k) = \text{div}((\partial_k \varepsilon) E + \varepsilon (\mathbf{e}_k \times i\mu H)) & \text{in } \Omega, \\
-\text{div}(\mu \nabla H_k) = \text{div}((\partial_k \mu) H - \mu (\mathbf{e}_k \times (J_e + i\varepsilon E))) & \text{in } \Omega.\n\end{cases}
$$

Lemma: if $\varepsilon \in C^0$, $F \in L^p$ and

 $-\text{div}(\varepsilon\nabla u) = \text{div}F$ very weakly

then $u\in W^{1,p}$

Theorem

- For simplicity, let us focus on E and remove the quantity ε ($\mathbf{e}_k \times i\mu$ H).
- ► Start with: $E \in L^2$, $\partial_k \varepsilon \in L^{3+\delta} \implies F \in L^p$, with $p = \frac{6+2\delta}{5+\delta}$.
- ▶ Apply Lemma: $E \in W^{1,p} \subseteq L^q$, with $q = 3p(3-p)^{-1}$.
- ► There holds $E \in L^q$ with $q = 2 + \frac{2\delta}{9+\delta} > 2$.
- **Bootstrap!** Note: $\delta > 0$ is optimal for this argument.

$$
\begin{cases}\n-\text{div}(\varepsilon \nabla E_k) = \text{div}((\partial_k \varepsilon) E + \varepsilon (\mathbf{e}_k \times i\mu H)) & \text{in } \Omega, \\
-\text{div}(\mu \nabla H_k) = \text{div}((\partial_k \mu) H - \mu (\mathbf{e}_k \times (J_e + i\varepsilon E))) & \text{in } \Omega.\n\end{cases}
$$

Lemma: if $\varepsilon \in C^0$, $F \in L^p$ and

 $-\text{div}(\varepsilon\nabla u) = \text{div}F$ very weakly

then $u\in W^{1,p}$

Theorem

If $\varepsilon, \mu \in W^{1,3+\delta}$ for some $\delta > 0$, then $E, H \in W^{1,2}$. Moreover, if $J_e \in W^{1,3+\delta}$ then $E, H \in C^{0,\alpha}$.

For simplicity, let us focus on E and remove the quantity ε (e_k $\times i\mu H$).

► Start with: $E \in L^2$, $\partial_k \varepsilon \in L^{3+\delta} \implies F \in L^p$, with $p = \frac{6+2\delta}{5+\delta}$.

▶ Apply Lemma: $E \in W^{1,p} \subseteq L^q$, with $q = 3p(3-p)^{-1}$.

- ► There holds $E \in L^q$ with $q = 2 + \frac{2\delta}{9+\delta} > 2$.
- **Bootstrap!** Note: $\delta > 0$ is optimal for this argument.

$$
\begin{cases}\n-\text{div}(\varepsilon \nabla E_k) = \text{div}((\partial_k \varepsilon) E + \varepsilon (\mathbf{e}_k \times i\mu H)) & \text{in } \Omega,\n\end{cases}
$$

Lemma: if $\varepsilon\in C^0$, $F\in L^p$ and

 $-\text{div}(\varepsilon\nabla u)=\text{div}F$ very weakly

then $u\in W^{1,p}$.

Theorem

If $\varepsilon, \mu \in W^{1,3+\delta}$ for some $\delta > 0$, then $E, H \in W^{1,2}$. Moreover, if $J_e \in W^{1,3+\delta}$ then $E, H \in C^{0,\alpha}$.

For simplicity, let us focus on E and remove the quantity ε (e_k $\times i\mu H$).

► Start with: $E \in L^2$, $\partial_k \varepsilon \in L^{3+\delta} \implies F \in L^p$, with $p = \frac{6+2\delta}{5+\delta}$.

▶ Apply Lemma: $E \in W^{1,p} \subseteq L^q$, with $q = 3p(3-p)^{-1}$.

► There holds $E \in L^q$ with $q = 2 + \frac{2\delta}{9+\delta} > 2$.

Bootstrap! Note: $\delta > 0$ is optimal for this argument.

$$
\begin{cases}\n-\text{div}(\varepsilon \nabla E_k) = \text{div}((\partial_k \varepsilon) E + \varepsilon (\mathbf{e}_k \times i\mu H)) & \text{in } \Omega,\n\end{cases}
$$

Lemma: if $\varepsilon\in C^0$, $F\in L^p$ and

 $-\text{div}(\varepsilon\nabla u)=\text{div}F$ very weakly

then $u\in W^{1,p}$.

Theorem

If $\varepsilon, \mu \in W^{1,3+\delta}$ for some $\delta > 0$, then $E, H \in W^{1,2}$. Moreover, if $J_e \in W^{1,3+\delta}$ then $E, H \in C^{0,\alpha}$.

For simplicity, let us focus on E and remove the quantity ε ($\mathbf{e}_k \times i\mu H$).

► Start with: $E \in L^2$, $\partial_k \varepsilon \in L^{3+\delta} \implies F \in L^p$, with $p = \frac{6+2\delta}{5+\delta}$.

▶ Apply Lemma: $E \in W^{1,p} \subseteq L^q$, with $q = 3p(3-p)^{-1}$.

- ► There holds $E \in L^q$ with $q = 2 + \frac{2\delta}{9+\delta} > 2$.
- **Bootstrap!** Note: $\delta > 0$ is optimal for this argument.

$$
\int -\text{div}(\varepsilon \nabla E_k) = \text{div}((\partial_k \varepsilon) E) \quad \text{in } \Omega,
$$

Lemma: if $\varepsilon\in C^0$, $F\in L^p$ and

 $-\text{div}(\varepsilon\nabla u)=\text{div}F$ very weakly

then $u\in W^{1,p}$.

Theorem

If $\varepsilon, \mu \in W^{1,3+\delta}$ for some $\delta > 0$, then $E, H \in W^{1,2}$. Moreover, if $J_e \in W^{1,3+\delta}$ then $E, H \in C^{0,\alpha}$.

For simplicity, let us focus on E and remove the quantity ε (e_k $\times i\mu H$).

► Start with: $E \in L^2$, $\partial_k \varepsilon \in L^{3+\delta} \implies F \in L^p$, with $p = \frac{6+2\delta}{5+\delta}$.

▶ Apply Lemma: $E \in W^{1,p} \subseteq L^q$, with $q = 3p(3-p)^{-1}$.

► There holds $E \in L^q$ with $q = 2 + \frac{2\delta}{9+\delta} > 2$.

Bootstrap! Note: $\delta > 0$ is optimal for this argument.

$$
\int -\text{div}(\varepsilon \nabla E_k) = \text{div}((\partial_k \varepsilon) E) \quad \text{in } \Omega,
$$

Lemma: if $\varepsilon\in C^0$, $F\in L^p$ and

 $-\text{div}(\varepsilon\nabla u)=\text{div}F$ very weakly

then $u\in W^{1,p}$.

Theorem

If $\varepsilon, \mu \in W^{1,3+\delta}$ for some $\delta > 0$, then $E, H \in W^{1,2}$. Moreover, if $J_e \in W^{1,3+\delta}$ then $E, H \in C^{0,\alpha}$.

For simplicity, let us focus on E and remove the quantity ε (e_k \times *iµH*).

► Start with: $E \in L^2$, $\partial_k \varepsilon \in L^{3+\delta} \implies F \in L^p$, with $p = \frac{6+2\delta}{5+\delta}$.

▶ Apply Lemma: $E \in W^{1,p} \subseteq L^q$, with $q = 3p(3-p)^{-1}$.

► There holds $E \in L^q$ with $q = 2 + \frac{2\delta}{9+\delta} > 2$.

Bootstrap! Note: $\delta > 0$ is optimal for this argument.

$$
\int -\text{div}(\varepsilon \nabla E_k) = \text{div}((\partial_k \varepsilon) E) \quad \text{in } \Omega,
$$

Lemma: if $\varepsilon\in C^0$, $F\in L^p$ and

 $-\text{div}(\varepsilon\nabla u)=\text{div}F$ very weakly

then $u\in W^{1,p}$.

Theorem

- For simplicity, let us focus on E and remove the quantity ε (e_k \times *iµH*).
- ► Start with: $E \in L^2$, $\partial_k \varepsilon \in L^{3+\delta} \implies F \in L^p$, with $p = \frac{6+2\delta}{5+\delta}$.
- ► Apply Lemma: $E \in W^{1,p} \subseteq L^q$, with $q = 3p(3-p)^{-1}$.
- ► There holds $E \in L^q$ with $q = 2 + \frac{2\delta}{9+\delta} > 2$.
- **Bootstrap!** Note: $\delta > 0$ is optimal for this argument.

$$
\int -\text{div}(\varepsilon \nabla E_k) = \text{div}((\partial_k \varepsilon) E) \quad \text{in } \Omega,
$$

Lemma: if $\varepsilon\in C^0$, $F\in L^p$ and

 $-\text{div}(\varepsilon\nabla u)=\text{div}F$ very weakly

then $u\in W^{1,p}$.

Theorem

- For simplicity, let us focus on E and remove the quantity ε (e_k \times *iµH*).
- ► Start with: $E \in L^2$, $\partial_k \varepsilon \in L^{3+\delta} \implies F \in L^p$, with $p = \frac{6+2\delta}{5+\delta}$.
- ► Apply Lemma: $E \in W^{1,p} \subseteq L^q$, with $q = 3p(3-p)^{-1}$.
- ▶ There holds $E \in L^q$ with $q = 2 + \frac{2\delta}{9+\delta} > 2$.
- **Bootstrap!** Note: $\delta > 0$ is optimal for this argument.

$$
\int -\text{div}(\varepsilon \nabla E_k) = \text{div}((\partial_k \varepsilon) E) \quad \text{in } \Omega,
$$

Lemma: if $\varepsilon\in C^0$, $F\in L^p$ and

$$
-\text{div}(\varepsilon \nabla u) = \text{div} F \qquad \text{very weakly}
$$

then $u\in W^{1,p}$.

Theorem

- For simplicity, let us focus on E and remove the quantity ε ($\mathbf{e}_k \times i\mu H$).
- ► Start with: $E \in L^2$, $\partial_k \varepsilon \in L^{3+\delta} \implies F \in L^p$, with $p = \frac{6+2\delta}{5+\delta}$.
- ► Apply Lemma: $E \in W^{1,p} \subseteq L^q$, with $q = 3p(3-p)^{-1}$.
- ▶ There holds $E \in L^q$ with $q = 2 + \frac{2\delta}{9+\delta} > 2$.
- **Bootstrap!** Note: $\delta > 0$ is optimal for this argument.

$$
\int -\text{div}(\varepsilon \nabla E_k) = \text{div}((\partial_k \varepsilon) E) \quad \text{in } \Omega,
$$

Lemma: if $\varepsilon\in C^0$, $F\in L^p$ and

$$
-\text{div}(\varepsilon \nabla u) = \text{div} F \qquad \text{very weakly}
$$

then $u\in W^{1,p}$.

Theorem

- For simplicity, let us focus on E and remove the quantity ε ($\mathbf{e}_k \times i\mu H$).
- ► Start with: $E \in L^2$, $\partial_k \varepsilon \in L^{3+\delta} \implies F \in L^p$, with $p = \frac{6+2\delta}{5+\delta}$.
- ► Apply Lemma: $E \in W^{1,p} \subseteq L^q$, with $q = 3p(3-p)^{-1}$.
- ▶ There holds $E \in L^q$ with $q = 2 + \frac{2\delta}{9+\delta} > 2$.
- **D** Bootstrap! Note: $\delta > 0$ is optimal for this argument.

- ► Same result if only $\varepsilon \in W^{1,3+\delta}$ and $\mu \in L^\infty\left(\Omega;\mathbb{R}^{3\times 3}\right)$ obtain $E \in C^{0,\alpha}$.
- **Boundary regularity** is shown by carefully inspecting the very weak form $\int_{\Omega} E_k \text{div} \left(\varepsilon^T \nabla \bar{\varphi} \right) dx = \int_{\partial \Omega}$ $\int_{\partial \Omega} (\partial_k \bar{\varphi}) \varepsilon E \cdot \nu ds + \int_{\Omega}$ $\frac{d}{d\Omega}((\partial_k \varepsilon)E + \varepsilon (\mathbf{e}_k \times i\mu H)) \cdot \nabla \bar{\varphi} dx.$
- \triangleright The case of **bianisotropic materials** can be studied in the same way, by considering the elliptic system

$$
\begin{cases}\n-\text{div}(\varepsilon \nabla E_k + \varepsilon \nabla H_k) = \text{div}((\partial_k \varepsilon)E + (\partial_k \varepsilon)H + i\varepsilon (\mathbf{e}_k \times (\zeta E + \mu H))) \\
+\text{div}(-\xi (\mathbf{e}_k \times (i\varepsilon E + i\xi H + J_e))) \text{ in } \Omega. \\
-\text{div}(\zeta \nabla E_k + \mu \nabla H_k) = \text{div}((\partial_k \zeta)E + (\partial_k \mu)H - \mu (\mathbf{e}_k \times (i\varepsilon E + i\xi H + J_e))) \\
+\text{div}(\zeta (\mathbf{e}_k \times (i\zeta E + i\mu H))) \text{ in } \Omega.\n\end{cases}
$$

We get: if $\varepsilon,\xi,\zeta,\mu\in W^{1,3+\delta}$ then $E,H\in C^{0,\alpha}.$

 $\overline{\mathcal{L}}$

► Same result if only $\varepsilon \in W^{1,3+\delta}$ and $\mu \in L^\infty\left(\Omega;\mathbb{R}^{3\times 3}\right)$ obtain $E \in C^{0,\alpha}$.

Boundary regularity is shown by carefully inspecting the very weak form - $\int_{\Omega} E_k \text{div} \left(\varepsilon^T \nabla \bar{\varphi} \right) dx = \int_{\Omega}$ $\int_{\partial\Omega}(\partial_k\bar{\varphi})\varepsilon E\cdot\nu ds+\int_{\Omega}$ $\frac{\partial}{\partial \Omega}((\partial_k \varepsilon)E + \varepsilon (\mathbf{e}_k \times i\mu H)) \cdot \nabla \bar{\varphi} dx.$

 \triangleright The case of **bianisotropic materials** can be studied in the same way, by considering the elliptic system

$$
\begin{cases}\n-\text{div}\left(\varepsilon\nabla E_k + \xi \nabla H_k\right) = \text{div}\left(\left(\partial_k \varepsilon\right)E + \left(\partial_k \xi\right)H + i\varepsilon\left(\mathbf{e}_k \times \left(\zeta E + \mu H\right)\right)\right) \\
+\text{div}\left(-\xi\left(\mathbf{e}_k \times \left(i\varepsilon E + i\xi H + J_e\right)\right)\right) & \text{in } \Omega.\n\end{cases}
$$
\n
$$
-\text{div}\left(\zeta \nabla F_x + \mu \nabla H_x\right) = \text{div}\left(\left(\partial_k \zeta\right)F + \left(\partial_k \mu\right)H - \mu\left(\mathbf{e}_k \times \left(i\varepsilon F + i\varepsilon H + J_e\right)\right)\right)
$$

 $-\text{div}\left(\zeta\nabla E_k+\mu\nabla H_k\right)=\text{div}\left(\left(\partial_k\zeta\right)E+\left(\partial_k\mu\right)H-\mu\left(\mathbf{e}_k\times\left(i\varepsilon E+i\xi H+J_e\right)\right)\right)$ +div $(\zeta(e_k \times (i\zeta E + i\mu H)))$ in Ω .

We get: if $\varepsilon,\xi,\zeta,\mu\in W^{1,3+\delta}$ then $E,H\in C^{0,\alpha}.$

► Same result if only $\varepsilon \in W^{1,3+\delta}$ and $\mu \in L^\infty\left(\Omega;\mathbb{R}^{3\times 3}\right)$ obtain $E \in C^{0,\alpha}$.

Boundary regularity is shown by carefully inspecting the very weak form

$$
\int_{\Omega} E_k \text{div} \left(\varepsilon^T \nabla \bar{\varphi} \right) dx = \int_{\partial \Omega} (\partial_k \bar{\varphi}) \varepsilon E \cdot \nu ds + \int_{\Omega} \left((\partial_k \varepsilon) E + \varepsilon \left(\mathbf{e}_k \times i\mu H \right) \right) \cdot \nabla \bar{\varphi} dx.
$$

 \triangleright The case of bianisotropic materials can be studied in the same way, by considering the elliptic system

$$
\begin{cases}\n-\text{div}(\varepsilon \nabla E_k + \xi \nabla H_k) = \text{div}((\partial_k \varepsilon)E + (\partial_k \xi)H + i\varepsilon (\mathbf{e}_k \times (\zeta E + \mu H))) \\
+\text{div}(-\xi (\mathbf{e}_k \times (i\varepsilon E + i\xi H + J_e))) \text{ in } \Omega. \\
-\text{div}(\zeta \nabla E_k + \mu \nabla H_k) = \text{div}((\partial_k \zeta)E + (\partial_k \mu)H - \mu (\mathbf{e}_k \times (i\varepsilon E + i\xi H + J_e))) \\
+\text{div}(\zeta (\mathbf{e}_k \times (i\zeta E + i\mu H))) \text{ in } \Omega.\n\end{cases}
$$

We get: if $\varepsilon,\xi,\zeta,\mu\in W^{1,3+\delta}$ then $E,H\in C^{0,\alpha}.$

► Same result if only $\varepsilon \in W^{1,3+\delta}$ and $\mu \in L^\infty\left(\Omega;\mathbb{R}^{3\times 3}\right)$ obtain $E \in C^{0,\alpha}$.

Boundary regularity is shown by carefully inspecting the very weak form

$$
\int_{\Omega} E_k \text{div} \left(\varepsilon^T \nabla \bar{\varphi} \right) dx = \int_{\partial \Omega} (\partial_k \bar{\varphi}) \varepsilon E \cdot \nu ds + \int_{\Omega} \left((\partial_k \varepsilon) E + \varepsilon \left(\mathbf{e}_k \times i\mu H \right) \right) \cdot \nabla \bar{\varphi} dx.
$$

 \triangleright The case of bianisotropic materials can be studied in the same way, by considering the elliptic system

$$
\begin{cases}\n-\text{div}(\varepsilon \nabla E_k + \xi \nabla H_k) = \text{div}((\partial_k \varepsilon)E + (\partial_k \xi)H + i\varepsilon (\mathbf{e}_k \times (\zeta E + \mu H))) \\
+\text{div}(-\xi (\mathbf{e}_k \times (i\varepsilon E + i\xi H + J_e))) \text{ in } \Omega. \\
-\text{div}(\zeta \nabla E_k + \mu \nabla H_k) = \text{div}((\partial_k \zeta)E + (\partial_k \mu)H - \mu (\mathbf{e}_k \times (i\varepsilon E + i\xi H + J_e))) \\
+\text{div}(\zeta (\mathbf{e}_k \times (i\zeta E + i\mu H))) \text{ in } \Omega.\n\end{cases}
$$

We get: if $\varepsilon,\xi,\zeta,\mu\in W^{1,3+\delta}$ then $E,H\in C^{0,\alpha}$.

► Same result if only $\varepsilon \in W^{1,3+\delta}$ and $\mu \in L^\infty\left(\Omega;\mathbb{R}^{3\times 3}\right)$ obtain $E \in C^{0,\alpha}$.

Boundary regularity is shown by carefully inspecting the very weak form

$$
\int_{\Omega} E_k \text{div} \left(\varepsilon^T \nabla \bar{\varphi} \right) dx = \int_{\partial \Omega} (\partial_k \bar{\varphi}) \varepsilon E \cdot \nu ds + \int_{\Omega} \left((\partial_k \varepsilon) E + \varepsilon \left(\mathbf{e}_k \times i\mu H \right) \right) \cdot \nabla \bar{\varphi} dx.
$$

 \triangleright The case of bianisotropic materials can be studied in the same way, by considering the elliptic system

$$
\begin{cases}\n-\text{div}(\varepsilon \nabla E_k + \xi \nabla H_k) = \text{div}((\partial_k \varepsilon)E + (\partial_k \xi)H + i\varepsilon (\mathbf{e}_k \times (\zeta E + \mu H))) \\
+\text{div}(-\xi (\mathbf{e}_k \times (i\varepsilon E + i\xi H + J_e))) \text{ in } \Omega. \\
-\text{div}(\zeta \nabla E_k + \mu \nabla H_k) = \text{div}((\partial_k \zeta)E + (\partial_k \mu)H - \mu (\mathbf{e}_k \times (i\varepsilon E + i\xi H + J_e))) \\
+\text{div}(\zeta (\mathbf{e}_k \times (i\zeta E + i\mu H))) \text{ in } \Omega.\n\end{cases}
$$

We get: if $\varepsilon,\xi,\zeta,\mu\in W^{1,3+\delta}$ then $E,H\in C^{0,\alpha}$.

Conclusions

Past

- \blacktriangleright The regularity theory for Maxwell's equations has been studied mainly with ad-hoc techniques
- \blacktriangleright The assumption $\varepsilon \in W^{1,\infty}$ was believed to be optimal to have $E \in C^{0,\alpha}$

Present

- \blacktriangleright The L^p theory for elliptic equations can be easily applied to Maxwell's equations
- \blacktriangleright Main result: $\varepsilon, \mu \in W^{1,3+\delta} \implies E, H \in C^{0,\alpha}$
- \triangleright Same result for bianisotropic materials, no need to develop a different approach

 \blacktriangleright Is $W^{1,3+\delta}$ the optimal assumption? Probably not! (ongoing work with Jan Kristensen)

Conclusions

Past

- \blacktriangleright The regularity theory for Maxwell's equations has been studied mainly with ad-hoc techniques
- \blacktriangleright The assumption $\varepsilon \in W^{1,\infty}$ was believed to be optimal to have $E \in C^{0,\alpha}$

Present

- \blacktriangleright The L^p theory for elliptic equations can be easily applied to Maxwell's equations
- \blacktriangleright Main result: $\varepsilon, \mu \in W^{1,3+\delta} \implies E, H \in C^{0,\alpha}$
- \triangleright Same result for bianisotropic materials, no need to develop a different approach

 \blacktriangleright Is $W^{1,3+\delta}$ the optimal assumption? Probably not! (ongoing work with Jan Kristensen)

Conclusions

Past

- \blacktriangleright The regularity theory for Maxwell's equations has been studied mainly with ad-hoc techniques
- \blacktriangleright The assumption $\varepsilon \in W^{1,\infty}$ was believed to be optimal to have $E \in C^{0,\alpha}$

Present

- \blacktriangleright The L^p theory for elliptic equations can be easily applied to Maxwell's equations
- \blacktriangleright Main result: $\varepsilon, \mu \in W^{1,3+\delta} \implies E, H \in C^{0,\alpha}$
- \triangleright Same result for bianisotropic materials, no need to develop a different approach

Future

 \blacktriangleright Is $W^{1,3+\delta}$ the optimal assumption? Probably not! (ongoing work with Jan Kristensen)

Thank you for your attention!

G. S. Alberti and Y. Capdeboscq.

Elliptic regularity theory applied to time harmonic anisotropic Maxwell's equations with less than Lipschitz complex coefficients. Siam J. Math. Anal., to appear.