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Motivation: quantitative hybrid imaging problems
I Microwave imaging + ultrasounds [Triki, 2010, Ammari et al., 2011]{

div(a∇uiω) + ω2 ε uiω = 0 in Ω,
uiω = ϕi on ∂Ω.

Problem: a(x)
∣∣∇uiω∣∣2 (x), ε(x)

∣∣uiω∣∣2 (x)
?−→ a, ε

I Quantitative thermo-acoustic [Bal et al., 2011, Ammari et al., 2013]{
∆uiω + (ω2 + iωσ)uiω = 0 in Ω,
uiω = ϕi on ∂Ω.

Problem: σ(x)
∣∣uiω∣∣2 (x)

?−→ σ

I MREIT [Seo et al., 2012, Bal and Guo, 2013] curlEiω = iωHi
ω in Ω,

curlHi
ω = −i(ωε+ iσ)Eiω in Ω,

Eiω × ν = ϕi × ν on ∂Ω.

Problem: Hi
ω(x)

?−→ ε, σ

The measurements are meaningful at x ∈ Ω if at least uiω(x) 6= 0, ∇uiω(x) 6= 0, ...
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Quantitative thermo-acoustic
Take ϕ1, . . . , ϕd+1, where d is the dimension.{

∆uiω + (ω2 + iωσ)uiω = 0 in Ω,
uiω = ϕi on ∂Ω.

ei,jω = σ uiωu
j
ω

?−→ σ

I Aω =
[
∇ e2,1ω

e1,1ω
· · · ∇ ed+1,1

ω

e1,1ω

]
wherever u1

ω 6= 0

I |detAω| ≥ c
∣∣det

[
u1
ω · · · ud+1

ω

∇u1
ω · · · ∇ud+1

ω

]∣∣
I vω = A−1

ω div(Aω)T

I Exact formula for σ [Ammari et al., 2013, Bal and Uhlmann, 2013]

σ =
−<vω · =vω + div=vω

2ω
.

The constraints |u1
ω| ≥ C > 0 and

∣∣det

[
u1
ω · · · ud+1

ω

∇u1
ω · · · ∇ud+1

ω

]∣∣ ≥ C give

uniqueness, stability and explicit reconstruction of the unknown σ.
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The Helmholtz equation

{
∆uiω + (ω2ε+ iωσ)uiω = 0 in Ω,
uiω = ϕi on ∂Ω.

I Ω ⊆ Rd, d = 2, 3: smooth bounded domain
I ε ∈ L∞(Ω) such that Λ−1 ≤ ε ≤ Λ in Ω

I σ ∈ L∞(Ω) such that either Λ−1 ≤ σ ≤ Λ or σ = 0 in Ω

I ω ∈ A = [Kmin,Kmax]: admissible frequencies

0
√
λ1

√
λ2

√
λ3

√
λ4A

I K ⊂ A: finite set of frequencies
I ϕ1, . . . , ϕd+1: boundary conditions
I K × {ϕi}: set of measurements
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Complete Sets of Measurements
A set of measurements K × {ϕi : i = 1, . . . , d+ 1} is C-complete if for every
x ∈ Ω there exists ω̄(x) ∈ K such that:
1.
∣∣u1
ω̄

∣∣ (x) ≥ C > 0,

2.
∣∣det

[
∇u2

ω̄ · · · ∇ud+1
ω̄

]∣∣(x) ≥ C > 0,

3.
∣∣det

[
u1
ω̄ · · · ud+1

ω̄

∇u1
ω̄ · · · ∇ud+1

ω̄

]∣∣(x) ≥ C > 0.

These constraints arise in various contexts:
I Microwaves + ultrasounds:

I stability: need 1. [Triki, 2010]
I reconstruction formulae: need 1., 2. and 3. [Ammari et al., 2011]

I Quantitative thermo-acoustics:
I stability: need 1. [Bal et al., 2011]
I reconstruction formulae: need 1. and 3. [Ammari et al., 2013]

I General elliptic equations (quantitative photo-acoustics, elastography):
I need 1., 2., 3. and further conditions [Bal and Uhlmann, 2013]

How can we construct complete sets of measurements, namely find K and ϕi?
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Several approaches

1.
∣∣u1
ω̄

∣∣ (x) ≥ C, 2.
∣∣det

[
∇u2

ω̄ · · · ∇ud+1
ω̄

]∣∣(x) ≥ C, 3. . . .

I Complex geometric optics solutions [Sylvester and Uhlmann, 1987]
I u

(t)
ω0(x) = etxm (cos(txl) + i sin(txl)) (1 + ψt), t� 1.

I If t� 1 then u(t)
ω0(x) ≈ etxm (cos(txl) + i sin(txl)) in C1 [Bal and Uhlmann,

2010]
I The traces on the boundary of these solutions give the required 1., 2. and 3.
I Need smooth coefficients, construction depends on coefficients.

I Runge approximation [Bal and Uhlmann, 2013]
I There exist solutions that are locally closed to the solutions of the constant

coefficient PDE.
I Based on unique continuation, non constructive.

I Stability results without the constraints
I Ultrasounds + microwave [Alessandrini, 2014], Quantitative photoacoustic

tomography [Alessandrini et al., 2015]
I Based on quantitative estimates of unique continuation.

Focus of this talk: new approach to construct suitable boundary conditions.
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Multi-Frequency Approach: basic idea I

As an example, let us consider the 1D case with ε = 1 and σ = 0.
1.
∣∣u1
ω(x)

∣∣ ≥ C: the zero set of u1
ω moves when ω varies:

u1
ω

ϕ(−π) = 1, ϕ(π) = 1

−π π

1

−1
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Multi-Frequency Approach: basic idea II

1.
∣∣u1
ω(x)

∣∣ ≥ C: the zero set of u1
ω may not move if the boundary condition is

not suitably chosen:

u1
ω

ϕ(−π) = −1, ϕ(π) = 1

−π π

1

−1
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Multi-Frequency Approach: ω = 0

1.
∣∣u1

0(x)
∣∣ ≥ C0 > 0 everywhere for ω = 0 =⇒ the zeros “move”

u1
ω

u1
0

ϕ(−π) = 1, ϕ(π) = 1

−π π

1

−1

Thus, we study first the ω = 0 case.
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It seems that all depends on the ω = 0 case: the unknowns ε and σ disappear!
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What happens in ω = 0?
{

∆uiω + (ω2ε+ iωσ)uiω = 0 in Ω,
uiω = ϕi on ∂Ω.

K × {ϕi : i = 1, . . . , d+ 1} is C-complete if for all x ∈ Ω there exists ω̄ ∈ K s.t.:

1.
∣∣u1
ω̄

∣∣ (x) ≥ C > 0, 2.
∣∣det

[
∇u2

ω̄ · · · ∇ud+1
ω̄

]∣∣(x) ≥ C > 0,

3.
∣∣det

[
u1
ω̄ · · · ud+1

ω̄

∇u1
ω̄ · · · ∇ud+1

ω̄

]∣∣(x) ≥ C > 0.

This conditions are immediately satisfied by choosing the boundary conditions

ϕ1 = 1,

ϕ2 = x1,

...
ϕd+1 = xd.
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How to pass from 0 to ω?

√
λ1

√
λ2

√
λ3

√
λ4A

{
∆uiω + (ω2ε+ iωσ)uiω = 0 in Ω,
uiω = ϕi on ∂Ω.

ω ∈ R \
√

Σ, Σ = {λl}l

A = —

Lemma
The map C \

√
Σ −→ C1(Ω), ω 7→ uiω is holomorphic.

I The set Zx = {ω ∈ A : u1
ω(x) = 0} is finite (consider 1. for simplicity)

I Namely, the zero level sets move!
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Main result
K × {ϕi : i = 1, . . . , d+ 1} is C-complete if for all x ∈ Ω there exists ω̄ ∈ K s.t.:

1.
∣∣u1
ω̄

∣∣ (x) ≥ C > 0, 2.
∣∣det

[
∇u2

ω̄ · · · ∇ud+1
ω̄

]∣∣(x) ≥ C > 0,

3.
∣∣det

[
u1
ω̄ · · · ud+1

ω̄

∇u1
ω̄ · · · ∇ud+1

ω̄

]∣∣(x) ≥ C > 0.

K(n): uniform partition of A = [Kmin,Kmax] with n points

0
√
λ1

√
λN

√
λN+1

√
λN+2A

Theorem (Alberti, 2014)
There exist C > 0 and n ∈ N∗ depending only on Ω, Λ and A such that

K(n) × {1, x1, . . . , xd+1}
is C-complete.

I Consider for simplicity condition 1.
I Lemma [Momm, 1990]: Let g be a holomorphic function in B(0,Kmax) such

that g(0) = 1. There exists ω ∈ A s.t. |g(ω)| ≥ C(A, sup |g|) > 0.

I Apply Lemma with gx(ω) = uω(x)
∏N
l=1

(λl−ω2)
λl

=⇒ |gx(ωx)| ≥ C.
I Finally, ‖∂ωuω‖C(Ω) ≤ D gives a set K(n) for n big enough.
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Outline of the talk

1 Introduction to hybrid imaging and non-zero constraints

2 Using multiple frequencies to enforce non-zero constraints

3 Additional results
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Another estimate on #K

K × {ϕ} is C-complete if for all x ∈ Ω there exists ω̄ ∈ K s.t. |uϕω̄| (x) ≥ C > 0.

Theorem (Alberti and Capdeboscq, 2015)
Take ϕ = 1. Assume that σ and ε are real analytic. The set{

(ω1, . . . , ωd+1) ∈ Ad+1 : min
Ω

(
∣∣uϕω1

∣∣+ · · ·+
∣∣uϕωd+1

∣∣) > 0
}

is open and dense in Ad+1.
In other words, (almost any) d+ 1 frequencies give a complete set.

Proof.

I Classical elliptic regularity theory implies that uϕω is real analytic
I The set X = {x ∈ Ω :

∣∣uϕω1

∣∣ = · · · =
∣∣uϕωl

∣∣ = 0} is an analytic variety
I Stratification for analytic varieties: X =

⋃
pAp, Ap analytic submanifolds

I Use that {ω : uϕω(x) = 0} consists of isolated points (holomorphicity in ω)
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∣∣ = 0} is an analytic variety
I Stratification for analytic varieties: X =

⋃
pAp, Ap analytic submanifolds

I Use that {ω : uϕω(x) = 0} consists of isolated points (holomorphicity in ω)
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Numerical simulations on #K

I Can we remove the analyticity assumption on the coefficients?
I A numerical test has been performed in 2D on 6561 different combinations of

coefficients of the type

I The numbers of needed frequencies ω are

#K = 2 #K = 3 #K ≥ 4

1609 4952 0

I This corresponds to the previous general result.

Giovanni S. Alberti (ENS, Paris) Constraints in PDE and hybrid imaging IHP, 4th June 2014 19 / 24



Numerical simulations on #K

I Can we remove the analyticity assumption on the coefficients?
I A numerical test has been performed in 2D on 6561 different combinations of

coefficients of the type

I The numbers of needed frequencies ω are

#K = 2 #K = 3 #K ≥ 4

1609 4952 0

I This corresponds to the previous general result.

Giovanni S. Alberti (ENS, Paris) Constraints in PDE and hybrid imaging IHP, 4th June 2014 19 / 24



Numerical simulations on #K

I Can we remove the analyticity assumption on the coefficients?
I A numerical test has been performed in 2D on 6561 different combinations of

coefficients of the type

I The numbers of needed frequencies ω are

#K = 2 #K = 3 #K ≥ 4

1609 4952 0

I This corresponds to the previous general result.

Giovanni S. Alberti (ENS, Paris) Constraints in PDE and hybrid imaging IHP, 4th June 2014 19 / 24



Some generalisations
I There is no need to consider these particular non-zero constraints:

Let b, r ∈ N∗ be two positive integers, C > 0 and let

ζ = (ζ1, . . . , ζr) : Cν(Ω)b −→ C(Ω)r be analytic.

K × {ϕ1, . . . , ϕb} is (ζ, C)-complete if for every x ∈ Ω there exists ω̄ ∈ K s.t.∣∣ζj(u1
ω̄, . . . , u

b
ω̄

)
(x)
∣∣ ≥ C, j = 1, . . . , r.

I In 2D, everything works with a ∈ C0,α(Ω;R2×2) and

div(a∇uiω) + (ω2ε+ iωσ)uiω = 0

by using the absence of critical points for the conductivity equation.
I Ammari et al. (2014) have successfully adapted this method to

div((ωε+ iσ)∇uiω) = 0.

I Maxwell’s equations.
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What if a 6≈ 1 in 3D?
The assumption a ≈ 1 in 3D seems necessary since the determinant of the
gradients of solutions of the conductivity equation always vanishes [Briane et al.,
2004]. However, the case ω = 0 may not be needed for the theory to work:

Theorem (Alberti, 2015)
Suppose a, ε ∈ C2(R3). For a generic C2 bounded domain Ω and a generic
ϕ ∈ C1(Ω) there exists a finite K ⊆ A such that∑

ω∈K

∣∣∇uϕω(x)
∣∣ ≥ c > 0, in Ω.
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Acousto-electromagnetic tomography (Ammari et al., 2012)

I Model{
∆uω + ω2εuω = 0 in Ω,
∂uω

∂ν − iωuω = ϕ on ∂Ω.

I Internal data:

ψω = |uω|2∇ε

I Linearised problem:

Dψω[ε](ρ) 7→ ρ

In order to have well-posedness of the linearised inverse problem we need∑
ω∈K
‖Dψω[ε](ρ)‖ ≥ C ‖ρ‖ , ρ ∈ H1(Ω),

or equivalently ∩ω∈K kerDψω[ε] = {0}.
Theorem (Alberti, Ammari, Ruan, 2014) This holds true with multiple frequencies.
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Numerical experiments

(a) K = {10} (b) K = {15}

(c) K = {20}

(d) K = {10, 15, 20}
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Conclusions
Past

I In order to use the reconstruction algorithms for several hybrid techniques, we
need to find illuminations such that the solutions of the Helmholtz equation
(or Maxwell’s equations) satisfy some non-zero constraints.

I These are classically constructed with complex geometric optics solutions or
the Runge approximation.

Present
I We propose an alternative by using a multi-frequency approach:

I A priori conditions on the illuminations which do not depend on the
coefficients;

I The coefficients do not have to be smooth;
I A priori lower bounds and number of frequencies.

I Same method for Maxwell’s equations.
Future

I We need n = d+ 1 frequencies with real analytic coefficients. Can we drop
this (very strong) assumption? (with Yves Capdeboscq)

I In 3D, can we drop the assumption a ≈ const?
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