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Photoacoustic tomography

(From Wikipedia, http://en.wikipedia.org/wiki/Photoacoustic_imaging_in_biomedicine)

1. The image is H(x) = Γ(x)µ(x)u(x), where
I µ is the light absorption,
I Γ is the Grüneisen parameter,
I and u is the light intensity.

2. How to extract the unknowns from H?
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PDE-based methods
I Alessandrini, Arridge, Bal, Beard, Beretta, Cox, Di Cristo, Francini, Gao, Jollivet, Jugnon, Kaipio,

Köstli, Laufer, Muszkieta, Naetar, Pulkkinen, Ren, Scherzer, Tarvainen, Uhlmann, Vessella, Zhao, ...

I A possible way to obtain Γ and µ from

H = Γµu

is based on the PDE satisfied by u. In the diffusive regime for light
−div(D∇u) + µu = 0 in Ω.

I This approach is sometimes very successful. Possible drawbacks:
I PDE model non accurate (e.g. transport regime for light), or required

boundary conditions not known.
I Too many unknowns (e.g. if Γ 6= 1 above)

The focus of this talk is a new approach to this issue based on the separation of
the unknowns from the fields via sparsity conditions:

h = logH = log Γµ+ log u = f + g.

I Following [Rosenthal, Razansky, Ntziachristos, 2009], observe that:
I the light absorption µ is a constitutive parameter of the tissue, and as such is

discontinuous. Its discontinuities are typically the inclusions we are looking for;
I the light intensity u tends to be much smoother.
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Introduction to sparse representations
I Let h ∈ Rn be a column vector (n = d× d is the resolution of the image).
I Let A ∈ Rn×m be a dictionary of m atoms, which are used as building blocks:

(1) h = Ay,

for some coefficient vector y ∈ Rm (weights).
I If m > n then (1) is in general underdetermined, and has many solutions y.
I Select the sparsest one, i.e. with fewest non-zero entries:

min
y∈Rm

‖y‖0 subject to h = Ay,

where ‖y‖0 := #supp y = #{α ∈ {1, . . . ,m} : y(α) 6= 0}.
I If the dictionary A is well chosen, it is possible to represent an n-dimensional

vector with much fewer coefficients.
I In practice, we minimise

min
y∈Rm

‖y‖0 subject to ‖h−Ay‖2 ≤ ε

for some ε > 0 (hard problem, but many available algorithms).
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Morphological component analysis (Starck, Elad, Donoho, 2004,...)

Back to the signal separation problem.

I Let h = f + g ∈ Rn be the sum of two components.
I Let Af ∈ Rn×mf and Ag ∈ Rn×mg be two dictionaries such that:

I f can be sparsely represented w.r.t. Af but not w.r.t. Ag;
I g can be sparsely represented w.r.t. Ag but not w.r.t. Af ;

I Decompose h w.r.t. the concatenated dictionary A = [Af,Ag]:

min
y∈Rmf+mg

‖y‖0 subject to [Af,Ag]
[ yf
yg

]
= h.

I Recover f ≈ Afyf , g ≈ Agyg.
In other words, the original components can be recovered provided that they have
different features. This is expressed in terms of the sparsity of their
decompositions with different dictionaries.
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Example: spikes and sinusoids (Donoho, Huo, 2001,...)

h = f + g

Choose Af = Aδ and Ag = AF and let y =
[ yf
yg

]
give the sparsest representation

of h w.r.t. A = [Af , Ag]. This clearly provides the right reconstruction: only 4
atoms are used.

f

g

Giovanni S Alberti (SAM, ETH Zurich) Disjoint sparsity and hybrid inverse problems UCL, October 9, 2015 9 / 24



Example: spikes and sinusoids (Donoho, Huo, 2001,...)

h = f + g

Choose Af = Aδ and Ag = AF and let y =
[ yf
yg

]
give the sparsest representation

of h w.r.t. A = [Af , Ag]. This clearly provides the right reconstruction: only 4
atoms are used.

f

g

Giovanni S Alberti (SAM, ETH Zurich) Disjoint sparsity and hybrid inverse problems UCL, October 9, 2015 9 / 24



Theoretical justification (Elad & Bruckstein, 2002)

Why does writing f = Afyf and g = Agyg give the correct reconstruction?

I (Uncertainty principle) If h 6= 0 has the representations h = AyA = ByB w. r. t.
two orthonormal bases A = [a1, . . . , an] and B = [b1, . . . , bn], then

‖yA‖0 + ‖yB‖0 ≥ 2/M,

where M = maxi,j |(ai, bj)2| is the mutual coherence. (M = 1/
√
n with

spikes and sinusoids.)
I If f and g have representations yf and yg satisfying ‖yf‖0 + ‖yg‖0 < 1/M ,

then the reconstruction is correct.
I In practice, the assumption ‖yf‖0 + ‖yg‖0 < 1/M is almost never satisfied,

and so the above argument remains only a theoretical speculation.

Focus of this new approach: extension to multiple measurements (many other
generalisations by Georgiev, Theis, Cichocki, Bobin, Moudden, Starck, Donoho, Kutyniok...).
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and so the above argument remains only a theoretical speculation.

Focus of this new approach: extension to multiple measurements (many other
generalisations by Georgiev, Theis, Cichocki, Bobin, Moudden, Starck, Donoho, Kutyniok...).
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Multi-measurement case

I Let
hi = f + gi ∈ Rn, i = 1, . . . , N

be N measurements. The problem is to recover f and the gi’s.
I Let Af ∈ Rn×mf and Ag ∈ Rn×mg be two dictionaries as before. Assume

that Ag is an orthonormal set (and that Af is an orthonormal basis). In our
applications:

I Af = Haar wavelets,
I Ag = low frequency sinusoids.

I The reconstruction method applied here consists in the minimisation of

min
y∈Rmf+Nmg

‖y‖0 subject to
∥∥∥[Af,Ag]

[
yf

yig

]
− hi

∥∥∥
2
≤ ε, i = 1, . . . , N,

where y = t[tyf ,
ty1g , . . . ,

tyNg ].
I The noisy case: hi = f + gi + ni, ‖ni‖2 ≤ η for some η > 0.
I Why does this provide a better reconstruction?
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Assumptions

I In the applications we have in mind, we shall have (indirect) control on the gi’s.
I We need enough incoherent data: this is measured by their disjoint sparsity.
I Write for some ρf , ρg > 0:∥∥f −Af ỹf∥∥2 ≤ ρf and

∥∥gi −Ag ỹig∥∥2 ≤ ρg.
Take β,D > 0. Assume that:
1. if |ỹig(α)− ỹjg(α)| ≤ β and ỹig(α)ỹjg(α) 6= 0 for some α then i = j;

2. for every p ∈ Rn such that
∥∥p∥∥

2
> D and

∥∥ tA⊥g p∥∥2 ≤ 2/3 there holds

#
(
supp tAfp\supp ỹf

)
+

N∑
i=1

#
(
{α : |( tAgp)(α)| ≥ 1} \ supp ỹig

)
> #

N⋃
i=1

supp ỹig+
∥∥ỹf∥∥0.

I 1 is mainly a technical assumption.
I 2 is at the core of the approach: multiple and disjointly sparse measurements
ỹig make it easy to be satisfied.
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Uncertainty principles

2. ... for every p ∈ Rn such that
∥∥p∥∥

2
> D and

∥∥ tA⊥g p∥∥2 ≤ 2/3 there holds

#
(
supp tAfp \ supp ỹf

)
+

N∑
i=1

#
(
{α : |( tAgp)(α)| ≥ 1} \ supp ỹig

)
> mg +

∥∥ỹf∥∥0.
I “Classical”. If M is the mutual coherence of Af and Ag:∥∥ tAfp∥∥0 +

∥∥ tAgp∥∥0 ≥ 2/M.

I “Normalised”. ∃D > 0 s.t. for all p ∈ Rn with
∥∥p∥∥

2
> D and

∥∥ tA⊥g p∥∥2 ≤ 2/3∥∥ tAfp∥∥0 + #{α : |( tAgp)(α)| ≥ 1} ≥ 2/M.

Unfortunately, M ∼ 1 if Af consists of wavelets and Ag of sinusoids...
I “Haar wavelets”. Let Af be the orthobasis of 2D Haar wavelets in R27×27 and

let Ag be 960 low frequency non-constant sinusoids. There exists D > 0 s.t.∥∥ tAfp∥∥0 ≥ 1160,

for every p ∈ Rn such that
∥∥p∥∥

2
> D and

∥∥ tA⊥g p∥∥2 ≤ 2/3.
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)
+

N∑
i=1

#
(
{α : |( tAgp)(α)| ≥ 1} \ supp ỹig
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Main result

The following result states that the separation method with multiple
measurements gives unique and stable reconstruction.

Theorem
Assume 1 and 2 and that ε := ρf + ρg + η ≤ β/3. Assume that f, gi, ni ∈ Rn
satisfy ‖ni‖2 ≤ η and∥∥Af ỹf − f∥∥2 ≤ ρf , ∥∥Ag ỹig − gi∥∥2 ≤ ρg, i = 1, . . . , N,

and let yf ∈ Rmf and yig ∈ Rmg realise the minimum of

min
y∈Rmf+Nmg

‖y‖0 subject to
∥∥∥[Af,Ag]

[
yf

yig

]
− hi

∥∥∥
2
≤ ε, i = 1, . . . , N,

where hi = f + gi + ni. Then∥∥Afyf − f∥∥2 ≤ (3D + 1)ε,
∥∥Agyig − gi∥∥2 ≤ (3D + 2)ε, i = 1, . . . , N.
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Outline of the talk

1 Introduction to hybrid imaging inverse problems

2 Disjoint sparsity for signal separation

3 Applications to quantitative photoacoustic tomography
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Quantitative photoacoustic tomography, Γ = 1

It gives us the image H(x) = Γ(x)µ(x)u(x) = µ(x)u(x). Need to find µ.

In the general case Γ 6= 1, apply the same approach and find Γµ and u. Then by
using the PDE approach all the unknowns can be reconstructed.
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Quantitative photoacoustic tomography, Γ = 1

I Multi-measurement data: H(x) = µ(x)ui(x), where{
−∆ui + µui = 0 in Ω,
ui = ϕi on ∂Ω.

I Taking a log: hi = logµ+ log ui.
I The above method may be used if logµ and log ui can be sparsely

represented with respect to two different dictionaries.
I Following [Rosenthal, Razansky, Ntziachristos, 2009], observe that:

I the light absorption µ is a constitutive parameter of the tissue, and as such is
discontinuous. Its discontinuities are typically the inclusions we are looking for;

I the light intensity ui is a solution of a PDE, and as such enjoys higher
regularity properties.

I Thus, the uncertainty principle motivates these for the dictionaries:
I Af : Haar wavelets (curvelets, ridgelets, shearlets...)
I Ag: low frequency trigonometric polynomials (constant included!)

I The disjoint sparsity signal separation method may be used to recover µ.

Giovanni S Alberti (SAM, ETH Zurich) Disjoint sparsity and hybrid inverse problems UCL, October 9, 2015 17 / 24



Quantitative photoacoustic tomography, Γ = 1

I Multi-measurement data: H(x) = µ(x)ui(x), where{
−∆ui + µui = 0 in Ω,
ui = ϕi on ∂Ω.

I Taking a log: hi = logµ+ log ui.
I The above method may be used if logµ and log ui can be sparsely

represented with respect to two different dictionaries.
I Following [Rosenthal, Razansky, Ntziachristos, 2009], observe that:

I the light absorption µ is a constitutive parameter of the tissue, and as such is
discontinuous. Its discontinuities are typically the inclusions we are looking for;

I the light intensity ui is a solution of a PDE, and as such enjoys higher
regularity properties.

I Thus, the uncertainty principle motivates these for the dictionaries:
I Af : Haar wavelets (curvelets, ridgelets, shearlets...)
I Ag: low frequency trigonometric polynomials (constant included!)

I The disjoint sparsity signal separation method may be used to recover µ.

Giovanni S Alberti (SAM, ETH Zurich) Disjoint sparsity and hybrid inverse problems UCL, October 9, 2015 17 / 24



Quantitative photoacoustic tomography, Γ = 1

I Multi-measurement data: H(x) = µ(x)ui(x), where{
−∆ui + µui = 0 in Ω,
ui = ϕi on ∂Ω.

I Taking a log: hi = logµ+ log ui.
I The above method may be used if logµ and log ui can be sparsely

represented with respect to two different dictionaries.
I Following [Rosenthal, Razansky, Ntziachristos, 2009], observe that:

I the light absorption µ is a constitutive parameter of the tissue, and as such is
discontinuous. Its discontinuities are typically the inclusions we are looking for;

I the light intensity ui is a solution of a PDE, and as such enjoys higher
regularity properties.

I Thus, the uncertainty principle motivates these for the dictionaries:
I Af : Haar wavelets (curvelets, ridgelets, shearlets...)
I Ag: low frequency trigonometric polynomials (constant included!)

I The disjoint sparsity signal separation method may be used to recover µ.

Giovanni S Alberti (SAM, ETH Zurich) Disjoint sparsity and hybrid inverse problems UCL, October 9, 2015 17 / 24



Quantitative photoacoustic tomography, Γ = 1

I Multi-measurement data: H(x) = µ(x)ui(x), where{
−∆ui + µui = 0 in Ω,
ui = ϕi on ∂Ω.

I Taking a log: hi = logµ+ log ui.
I The above method may be used if logµ and log ui can be sparsely

represented with respect to two different dictionaries.
I Following [Rosenthal, Razansky, Ntziachristos, 2009], observe that:

I the light absorption µ is a constitutive parameter of the tissue, and as such is
discontinuous. Its discontinuities are typically the inclusions we are looking for;

I the light intensity ui is a solution of a PDE, and as such enjoys higher
regularity properties.

I Thus, the uncertainty principle motivates these for the dictionaries:
I Af : Haar wavelets (curvelets, ridgelets, shearlets...)
I Ag: low frequency trigonometric polynomials (constant included!)

I The disjoint sparsity signal separation method may be used to recover µ.

Giovanni S Alberti (SAM, ETH Zurich) Disjoint sparsity and hybrid inverse problems UCL, October 9, 2015 17 / 24



Quantitative photoacoustic tomography, Γ = 1

I Multi-measurement data: H(x) = µ(x)ui(x), where{
−∆ui + µui = 0 in Ω,
ui = ϕi on ∂Ω.

I Taking a log: hi = logµ+ log ui.
I The above method may be used if logµ and log ui can be sparsely

represented with respect to two different dictionaries.
I Following [Rosenthal, Razansky, Ntziachristos, 2009], observe that:

I the light absorption µ is a constitutive parameter of the tissue, and as such is
discontinuous. Its discontinuities are typically the inclusions we are looking for;

I the light intensity ui is a solution of a PDE, and as such enjoys higher
regularity properties.

I Thus, the uncertainty principle motivates these for the dictionaries:
I Af : Haar wavelets (curvelets, ridgelets, shearlets...)
I Ag: low frequency trigonometric polynomials (constant included!)

I The disjoint sparsity signal separation method may be used to recover µ.

Giovanni S Alberti (SAM, ETH Zurich) Disjoint sparsity and hybrid inverse problems UCL, October 9, 2015 17 / 24



Quantitative photoacoustic tomography, Γ = 1

I Multi-measurement data: H(x) = µ(x)ui(x), where{
−∆ui + µui = 0 in Ω,
ui = ϕi on ∂Ω.

I Taking a log: hi = logµ+ log ui.
I The above method may be used if logµ and log ui can be sparsely

represented with respect to two different dictionaries.
I Following [Rosenthal, Razansky, Ntziachristos, 2009], observe that:

I the light absorption µ is a constitutive parameter of the tissue, and as such is
discontinuous. Its discontinuities are typically the inclusions we are looking for;

I the light intensity ui is a solution of a PDE, and as such enjoys higher
regularity properties.

I Thus, the uncertainty principle motivates these for the dictionaries:
I Af : Haar wavelets (curvelets, ridgelets, shearlets...)
I Ag: low frequency trigonometric polynomials (constant included!)

I The disjoint sparsity signal separation method may be used to recover µ.

Giovanni S Alberti (SAM, ETH Zurich) Disjoint sparsity and hybrid inverse problems UCL, October 9, 2015 17 / 24



Quantitative photoacoustic tomography, Γ = 1

I Multi-measurement data: H(x) = µ(x)ui(x), where{
−∆ui + µui = 0 in Ω,
ui = ϕi on ∂Ω.

I Taking a log: hi = logµ+ log ui.
I The above method may be used if logµ and log ui can be sparsely

represented with respect to two different dictionaries.
I Following [Rosenthal, Razansky, Ntziachristos, 2009], observe that:

I the light absorption µ is a constitutive parameter of the tissue, and as such is
discontinuous. Its discontinuities are typically the inclusions we are looking for;

I the light intensity ui is a solution of a PDE, and as such enjoys higher
regularity properties.

I Thus, the uncertainty principle motivates these for the dictionaries:
I Af : Haar wavelets (curvelets, ridgelets, shearlets...)
I Ag: low frequency trigonometric polynomials (constant included!)

I The disjoint sparsity signal separation method may be used to recover µ.

Giovanni S Alberti (SAM, ETH Zurich) Disjoint sparsity and hybrid inverse problems UCL, October 9, 2015 17 / 24



Example 1: noise-free case, N = 1

(a) The true absorption µ̃ (b) The true intensity ũ1

(c) The datum H1 (d) The reconstructed µ

Video: N = 1. Video: N = 2.
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Example 1: noisy case, N = 1, 3, 5

(a) The datum H1 (b) The datum H3 (c) The datum H5

(d) Reconstructed µ, N = 1 (e) Reconstructed µ, N = 3 (f) Reconstructed µ, N = 5
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Example 2: the Shepp-Logan Phantom

(a) µ̃ (b) H2 (c) H4

(d) µ, N = 1 (e) µ, N = 3 (f) µ, N = 5
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Example 2: the Shepp-Logan Phantom with noise

(a) H3 (b) H5 (c) µ, N = 5

Giovanni S Alberti (SAM, ETH Zurich) Disjoint sparsity and hybrid inverse problems UCL, October 9, 2015 21 / 24



Example 3: piecewise smooth

(a) µ̃ (b) µ, N = 1 (c) µ, N = 2
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Example 4: lateral illuminations, N = 4

(a) log µ̃ (b) log ũ1 (c) logH1

(d) µ̃ (e) µ (f) ‖µ− µ̃‖2 ≈ 1.5 · 10−2
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Conclusions
Past

I The reconstruction in QPAT (and in many hybrid imaging inverse problems)
require the separation of several signals hi = f + gi.

I PDE techniques are often powerful, but sometimes they are not applicable.

Present
I Multiple measurements and disjoint sparsity can be used to find f and gi.
I Uniqueness and stability proven.
I Orthogonal matching pursuit performs well in many numerical simulations

related to quantitative photoacoustic tomography.

Future
I How can we ensure that the light intensities ui give the necessary

incoherence, measured in terms of their disjoint sparsity? Random
illuminations may help.

I Norm l0 → norm l1.
I Robust uncertainty principles (Candes, Romberg, 2006)
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