Disjoint sparsity for signal separation and applications to hybrid imaging inverse problems

Giovanni S Alberti

Seminar for Applied Mathematics, ETH Zurich

University College London, October 9, 2015

ETH zürich

Outline

Introduction to hybrid imaging inverse problems

2 Disjoint sparsity for signal separation

Applications to quantitative photoacoustic tomography

Giovanni S. Alberti and Habib Ammari. Disjoint sparsity for signal separation and applications to hybrid inverse problems in medical imaging. *Applied and Computational Harmonic Analysis*, 2015. doi:10.1016/j.acha.2015.08.013.

Outline of the talk

1 Introduction to hybrid imaging inverse problems

Disjoint sparsity for signal separation

Applications to quantitative photoacoustic tomography

Photoacoustic tomography

(From Wikipedia, http://en.wikipedia.org/wiki/Photoacoustic_imaging_in_biomedicine)

- 1. The image is $H(x) = \Gamma(x)\mu(x)u(x)$, where
 - μ is the light absorption,
 - Γ is the Grüneisen parameter,
 - \blacktriangleright and u is the light intensity.
- 2. How to extract the unknowns from H?

Photoacoustic tomography

(From Wikipedia, http://en.wikipedia.org/wiki/Photoacoustic imaging in biomedicine)

- 1. The image is $H(x) = \Gamma(x)\mu(x)u(x)$, where
 - μ is the light absorption,
 - Γ is the Grüneisen parameter,
 - and u is the light intensity.

2. How to extract the unknowns from H?

Photoacoustic tomography

(From Wikipedia, http://en.wikipedia.org/wiki/Photoacoustic_imaging_in_biomedicine)

- 1. The image is $H(x) = \Gamma(x)\mu(x)u(x)$, where
 - μ is the light absorption,
 - Γ is the Grüneisen parameter,
 - and u is the light intensity.
- 2. How to extract the unknowns from H?

- Alessandrini, Arridge, Bal, Beard, Beretta, Cox, Di Cristo, Francini, Gao, Jollivet, Jugnon, Kaipio, Köstli, Laufer, Muszkieta, Naetar, Pulkkinen, Ren, Scherzer, Tarvainen, Uhlmann, Vessella, Zhao, ...
- A possible way to obtain Γ and μ from

$H = \Gamma \mu u$

is based on the PDE satisfied by u. In the diffusive regime for light $-\operatorname{div}(D\nabla u) + \mu u = 0$ in Ω .

- ▶ This approach is sometimes very successful. Possible drawbacks:
 - PDE model non accurate (e.g. transport regime for light), or required boundary conditions not known.
 - Too many unknowns (e.g. if $\Gamma
 eq 1$ above)

The focus of this talk is a new approach to this issue based on the separation of the unknowns from the fields via sparsity conditions:

$$h = \log H = \log \Gamma \mu + \log u = f + g.$$

- ▶ Following [Rosenthal, Razansky, Ntziachristos, 2009], observe that:
 - the light absorption μ is a constitutive parameter of the tissue, and as such is discontinuous. Its discontinuities are typically the inclusions we are looking for;
 - the light intensity u tends to be much smoother.

- Alessandrini, Arridge, Bal, Beard, Beretta, Cox, Di Cristo, Francini, Gao, Jollivet, Jugnon, Kaipio, Köstli, Laufer, Muszkieta, Naetar, Pulkkinen, Ren, Scherzer, Tarvainen, Uhlmann, Vessella, Zhao, ...
- A possible way to obtain Γ and μ from

$H = \Gamma \mu u$

is based on the PDE satisfied by u. In the diffusive regime for light $-\operatorname{div}(D\nabla u) + \mu u = 0$ in Ω .

- ► This approach is sometimes very successful. Possible drawbacks:
 - PDE model non accurate (e.g. transport regime for light), or required boundary conditions not known.
 - Too many unknowns (e.g. if $\Gamma
 eq 1$ above)

The focus of this talk is a new approach to this issue based on the separation of the unknowns from the fields via sparsity conditions:

 $h = \log H = \log \Gamma \mu + \log u = f + g.$

- ► Following [Rosenthal, Razansky, Ntziachristos, 2009], observe that:
 - the light absorption μ is a constitutive parameter of the tissue, and as such is discontinuous. Its discontinuities are typically the inclusions we are looking for;
 - the light intensity u tends to be much smoother.

- Alessandrini, Arridge, Bal, Beard, Beretta, Cox, Di Cristo, Francini, Gao, Jollivet, Jugnon, Kaipio, Köstli, Laufer, Muszkieta, Naetar, Pulkkinen, Ren, Scherzer, Tarvainen, Uhlmann, Vessella, Zhao, ...
- A possible way to obtain Γ and μ from

$H = \Gamma \mu u$

is based on the PDE satisfied by u. In the diffusive regime for light $-\operatorname{div}(D\nabla u) + \mu u = 0$ in Ω .

- ► This approach is sometimes very successful. Possible drawbacks:
 - PDE model non accurate (e.g. transport regime for light), or required boundary conditions not known.
 - Too many unknowns (e.g. if $\Gamma \neq 1$ above)

The focus of this talk is a new approach to this issue based on the separation of the <mark>unknowns</mark> from the fields via sparsity conditions:

 $h = \log H = \log \Gamma \mu + \log u = f + g.$

- ► Following [Rosenthal, Razansky, Ntziachristos, 2009], observe that:
 - the light absorption μ is a constitutive parameter of the tissue, and as such is discontinuous. Its discontinuities are typically the inclusions we are looking for;
 - the light intensity u tends to be much smoother.

- Alessandrini, Arridge, Bal, Beard, Beretta, Cox, Di Cristo, Francini, Gao, Jollivet, Jugnon, Kaipio, Köstli, Laufer, Muszkieta, Naetar, Pulkkinen, Ren, Scherzer, Tarvainen, Uhlmann, Vessella, Zhao, ...
- A possible way to obtain Γ and μ from

$H = \Gamma \mu u$

is based on the PDE satisfied by u. In the diffusive regime for light $-\operatorname{div}(D\nabla u) + \mu u = 0$ in Ω .

- ► This approach is sometimes very successful. Possible drawbacks:
 - PDE model non accurate (e.g. transport regime for light), or required boundary conditions not known.
 - Too many unknowns (e.g. if $\Gamma \neq 1$ above)

The focus of this talk is a new approach to this issue based on the separation of the unknowns from the fields via sparsity conditions:

 $h = \log H = \log \Gamma \mu + \log u = f + g.$

- ▶ Following [Rosenthal, Razansky, Ntziachristos, 2009], observe that:
 - the light absorption µ is a constitutive parameter of the tissue, and as such is discontinuous. Its discontinuities are typically the inclusions we are looking for;
 - the light intensity u tends to be much smoother.

- Alessandrini, Arridge, Bal, Beard, Beretta, Cox, Di Cristo, Francini, Gao, Jollivet, Jugnon, Kaipio, Köstli, Laufer, Muszkieta, Naetar, Pulkkinen, Ren, Scherzer, Tarvainen, Uhlmann, Vessella, Zhao, ...
- A possible way to obtain Γ and μ from

$H = \Gamma \mu u$

is based on the PDE satisfied by u. In the diffusive regime for light $-\operatorname{div}(D\nabla u) + \mu u = 0$ in Ω .

- ► This approach is sometimes very successful. Possible drawbacks:
 - PDE model non accurate (e.g. transport regime for light), or required boundary conditions not known.
 - Too many unknowns (e.g. if $\Gamma \neq 1$ above)

The focus of this talk is a new approach to this issue based on the separation of the unknowns from the fields via sparsity conditions:

$$h = \log H = \log \Gamma \mu + \log u = f + g.$$

- ▶ Following [Rosenthal, Razansky, Ntziachristos, 2009], observe that:
 - the light absorption μ is a constitutive parameter of the tissue, and as such is discontinuous. Its discontinuities are typically the inclusions we are looking for;
 - the light intensity *u* tends to be much smoother.

Outline of the talk

Introduction to hybrid imaging inverse problems

2 Disjoint sparsity for signal separation

Applications to quantitative photoacoustic tomography

- Let $h \in \mathbb{R}^n$ be a column vector ($n = d \times d$ is the resolution of the image).
- Let $A \in \mathbb{R}^{n \times m}$ be a dictionary of m atoms, which are used as building blocks:

1)
$$h = Ay_{\pm}$$

for some coefficient vector $y \in \mathbb{R}^m$ (weights).

- If m > n then (1) is in general underdetermined, and has many solutions y.
- ▶ Select the *sparsest* one, i.e. with fewest non-zero entries:

$$\min_{y \in \mathbb{R}^m} \|y\|_0 \quad \text{subject to } h = Ay,$$

where $||y||_0 := \# \sup y = \# \{ \alpha \in \{1, \dots, m\} : y(\alpha) \neq 0 \}.$

- ▶ If the dictionary A is well chosen, it is possible to represent an n-dimensional vector with much fewer coefficients.
- ▶ In practice, we minimise

$$\min_{y \in \mathbb{R}^m} \|y\|_0 \quad \text{subject to } \|h - Ay\|_2 \le \varepsilon$$

- Let $h \in \mathbb{R}^n$ be a column vector ($n = d \times d$ is the resolution of the image).
- Let $A \in \mathbb{R}^{n \times m}$ be a dictionary of m atoms, which are used as building blocks:

$$(1) h = Ay,$$

for some coefficient vector $y \in \mathbb{R}^m$ (weights).

- If m > n then (1) is in general underdetermined, and has many solutions y.
- Select the *sparsest* one, i.e. with fewest non-zero entries:

$$\min_{y \in \mathbb{R}^m} \|y\|_0 \quad \text{subject to } h = Ay,$$

where $||y||_0 := \# \sup y = \# \{ \alpha \in \{1, \dots, m\} : y(\alpha) \neq 0 \}.$

- ▶ If the dictionary A is well chosen, it is possible to represent an n-dimensional vector with much fewer coefficients.
- ▶ In practice, we minimise

$$\min_{y \in \mathbb{R}^m} \|y\|_0 \quad \text{subject to } \|h - Ay\|_2 \le \varepsilon$$

- Let $h \in \mathbb{R}^n$ be a column vector ($n = d \times d$ is the resolution of the image).
- Let $A \in \mathbb{R}^{n \times m}$ be a dictionary of m atoms, which are used as building blocks:

(1)
$$h = Ay,$$

for some coefficient vector $y \in \mathbb{R}^m$ (weights).

- If m > n then (1) is in general underdetermined, and has many solutions y.
- Select the *sparsest* one, i.e. with fewest non-zero entries:

$$\min_{y \in \mathbb{R}^m} \|y\|_0 \quad \text{subject to } h = Ay,$$

where $||y||_0 := \# \sup y = \# \{ \alpha \in \{1, \dots, m\} : y(\alpha) \neq 0 \}.$

- ▶ If the dictionary A is well chosen, it is possible to represent an n-dimensional vector with much fewer coefficients.
- ▶ In practice, we minimise

$$\min_{y \in \mathbb{R}^m} \|y\|_0 \quad \text{subject to } \|h - Ay\|_2 \le \varepsilon$$

- Let $h \in \mathbb{R}^n$ be a column vector ($n = d \times d$ is the resolution of the image).
- Let $A \in \mathbb{R}^{n \times m}$ be a dictionary of m atoms, which are used as building blocks:

$$(1) h = Ay,$$

for some coefficient vector $y \in \mathbb{R}^m$ (weights).

- If m > n then (1) is in general underdetermined, and has many solutions y.
- Select the sparsest one, i.e. with fewest non-zero entries:

$$\min_{y \in \mathbb{R}^m} \|y\|_0 \quad \text{subject to } h = Ay,$$

where $||y||_0 := \# \sup y = \# \{ \alpha \in \{1, \dots, m\} : y(\alpha) \neq 0 \}.$

▶ If the dictionary A is well chosen, it is possible to represent an n-dimensional vector with much fewer coefficients.

▶ In practice, we minimise

$$\min_{y \in \mathbb{R}^m} \|y\|_0 \quad \text{subject to } \|h - Ay\|_2 \le \varepsilon$$

- Let $h \in \mathbb{R}^n$ be a column vector ($n = d \times d$ is the resolution of the image).
- Let $A \in \mathbb{R}^{n \times m}$ be a dictionary of m atoms, which are used as building blocks:

$$(1) h = Ay,$$

for some coefficient vector $y \in \mathbb{R}^m$ (weights).

- If m > n then (1) is in general underdetermined, and has many solutions y.
- Select the sparsest one, i.e. with fewest non-zero entries:

$$\min_{y \in \mathbb{R}^m} \|y\|_0 \quad \text{subject to } h = Ay,$$

where $||y||_0 := \# \operatorname{supp} y = \# \{ \alpha \in \{1, \dots, m\} : y(\alpha) \neq 0 \}.$

If the dictionary A is well chosen, it is possible to represent an n-dimensional vector with much fewer coefficients.

In practice, we minimise

$$\min_{y \in \mathbb{R}^m} \|y\|_0 \quad \text{subject to } \|h - Ay\|_2 \le \varepsilon$$

7 / 24

- Let $h \in \mathbb{R}^n$ be a column vector ($n = d \times d$ is the resolution of the image).
- Let $A \in \mathbb{R}^{n \times m}$ be a dictionary of m atoms, which are used as building blocks:

$$(1) h = Ay,$$

for some coefficient vector $y \in \mathbb{R}^m$ (weights).

- If m > n then (1) is in general underdetermined, and has many solutions y.
- Select the sparsest one, i.e. with fewest non-zero entries:

$$\min_{y \in \mathbb{R}^m} \|y\|_0 \quad \text{subject to } h = Ay,$$

where $||y||_0 := \# \operatorname{supp} y = \# \{ \alpha \in \{1, \dots, m\} : y(\alpha) \neq 0 \}.$

- If the dictionary A is well chosen, it is possible to represent an n-dimensional vector with much fewer coefficients.
- ► In practice, we minimise

$$\min_{y \in \mathbb{R}^m} \left\| y \right\|_0 \quad \text{subject to } \left\| h - Ay \right\|_2 \le \varepsilon$$

- Let $h \in \mathbb{R}^n$ be a column vector ($n = d \times d$ is the resolution of the image).
- Let $A \in \mathbb{R}^{n \times m}$ be a dictionary of m atoms, which are used as building blocks:

$$(1) h = Ay,$$

for some coefficient vector $y \in \mathbb{R}^m$ (weights).

- If m > n then (1) is in general underdetermined, and has many solutions y.
- Select the sparsest one, i.e. with fewest non-zero entries:

$$\min_{y \in \mathbb{R}^m} \|y\|_0 \quad \text{subject to } h = Ay,$$

where $||y||_0 := \# \operatorname{supp} y = \# \{ \alpha \in \{1, \dots, m\} : y(\alpha) \neq 0 \}.$

- If the dictionary A is well chosen, it is possible to represent an n-dimensional vector with much fewer coefficients.
- ► In practice, we minimise

$$\min_{y \in \mathbb{R}^m} \left\| y \right\|_0 \quad \text{subject to } \left\| h - Ay \right\|_2 \le \varepsilon$$

Back to the signal separation problem.

 \blacktriangleright Let $h=f+g\in \mathbb{R}^n$ be the sum of two components.

- Let $A_f \in \mathbb{R}^{n \times m_f}$ and $A_g \in \mathbb{R}^{n \times m_g}$ be two dictionaries such that:
 - f can be sparsely represented w.r.t. A_f but not w.r.t. A_g ;
 - g can be sparsely represented w.r.t. A_g but not w.r.t. A_f ;

• Decompose h w.r.t. the concatenated dictionary $A = [A_f, A_g]$:

$$\min_{y \in \mathbb{R}^{m_f + m_g}} \|y\|_0 \quad \text{subject to } [A_f, A_g] \begin{bmatrix} y_f \\ y_g \end{bmatrix} = h.$$

▶ Recover $f \approx A_f y_f$, $g \approx A_g y_g$.

Back to the signal separation problem.

• Let $h = f + g \in \mathbb{R}^n$ be the sum of two components.

- ▶ Let $A_f \in \mathbb{R}^{n \times m_f}$ and $A_g \in \mathbb{R}^{n \times m_g}$ be two dictionaries such that:
 - f can be sparsely represented w.r.t. A_f but not w.r.t. A_g ;
 - g can be sparsely represented w.r.t. A_g but not w.r.t. A_f ;

• Decompose h w.r.t. the concatenated dictionary $A = [A_f, A_g]$:

$$\min_{y \in \mathbb{R}^{m_f + m_g}} \|y\|_0 \quad \text{subject to } [A_f, A_g] \begin{bmatrix} y_f \\ y_g \end{bmatrix} = h.$$

▶ Recover $f \approx A_f y_f$, $g \approx A_g y_g$.

Back to the signal separation problem.

- Let $h = f + g \in \mathbb{R}^n$ be the sum of two components.
- Let $A_f \in \mathbb{R}^{n \times m_f}$ and $A_g \in \mathbb{R}^{n \times m_g}$ be two dictionaries such that:
 - f can be sparsely represented w.r.t. A_f but not w.r.t. A_g ;
 - g can be sparsely represented w.r.t. A_g but not w.r.t. A_f ;

• Decompose h w.r.t. the concatenated dictionary $A = [A_f, A_g]$:

$$\min_{y \in \mathbb{R}^{m_f + m_g}} \|y\|_0 \quad \text{subject to } [A_f, A_g] \begin{bmatrix} y_f \\ y_g \end{bmatrix} = h.$$

• Recover $f \approx A_f y_f$, $g \approx A_g y_g$.

Back to the signal separation problem.

- Let $h = f + g \in \mathbb{R}^n$ be the sum of two components.
- Let $A_f \in \mathbb{R}^{n \times m_f}$ and $A_g \in \mathbb{R}^{n \times m_g}$ be two dictionaries such that:
 - f can be sparsely represented w.r.t. A_f but not w.r.t. A_g ;
 - g can be sparsely represented w.r.t. A_g but not w.r.t. A_f ;

• Decompose h w.r.t. the concatenated dictionary $A = [A_f, A_g]$:

$$\min_{y \in \mathbb{R}^{m_f + m_g}} \|y\|_0 \quad \text{subject to } [A_f, A_g] \begin{bmatrix} y_f \\ y_g \end{bmatrix} = h.$$

• Recover $f \approx A_f y_f$, $g \approx A_g y_g$.

Back to the signal separation problem.

- Let $h = f + g \in \mathbb{R}^n$ be the sum of two components.
- Let $A_f \in \mathbb{R}^{n \times m_f}$ and $A_g \in \mathbb{R}^{n \times m_g}$ be two dictionaries such that:
 - f can be sparsely represented w.r.t. A_f but not w.r.t. A_g ;
 - g can be sparsely represented w.r.t. A_g but not w.r.t. A_f ;

• Decompose h w.r.t. the concatenated dictionary $A = [A_f, A_g]$:

$$\min_{y \in \mathbb{R}^{m_f + m_g}} \|y\|_0 \quad \text{subject to } [A_f, A_g] \begin{bmatrix} y_f \\ y_g \end{bmatrix} = h.$$

• Recover $f \approx A_f y_f$, $g \approx A_g y_g$.

Back to the signal separation problem.

- Let $h = f + g \in \mathbb{R}^n$ be the sum of two components.
- Let $A_f \in \mathbb{R}^{n \times m_f}$ and $A_g \in \mathbb{R}^{n \times m_g}$ be two dictionaries such that:
 - f can be sparsely represented w.r.t. A_f but not w.r.t. A_g ;
 - g can be sparsely represented w.r.t. A_g but not w.r.t. A_f ;

▶ Decompose h w.r.t. the concatenated dictionary $A = [A_f, A_g]$:

$$\min_{y \in \mathbb{R}^{m_f + m_g}} \|y\|_0 \quad \text{subject to } [A_{f,A_g}] \begin{bmatrix} y_f \\ y_g \end{bmatrix} = h.$$

• Recover
$$f \approx A_f y_f$$
, $g \approx A_g y_g$.

Example: spikes and sinusoids (Donoho, Huo, 2001,...)

Choose $A_f = A_\delta$ and $A_g = A_F$ and let $y = \begin{bmatrix} y_f \\ y_g \end{bmatrix}$ give the sparsest representation of h w.r.t. $A = [A_f, A_g]$. This clearly provides the right reconstruction: only 4 atoms are used.

Example: spikes and sinusoids (Donoho, Huo, 2001,...)

 \boldsymbol{q}

Choose $A_f = A_\delta$ and $A_g = A_F$ and let $y = \begin{bmatrix} y_f \\ y_g \end{bmatrix}$ give the sparsest representation of h w.r.t. $A = [A_f, A_g]$. This clearly provides the right reconstruction: only 4 atoms are used.

Why does writing $f = A_f y_f$ and $g = A_g y_g$ give the correct reconstruction?

• (Uncertainty principle) If $h \neq 0$ has the representations $h = Ay_A = By_B$ w. r. t. two orthonormal bases $A = [a_1, \ldots, a_n]$ and $B = [b_1, \ldots, b_n]$, then

 $||y_A||_0 + ||y_B||_0 \ge 2/M,$

where $M = \max_{i,j} |(a_i, b_j)_2|$ is the *mutual coherence*. $(M = 1/\sqrt{n}$ with spikes and sinusoids.)

- ▶ If f and g have representations y_f and y_g satisfying $||y_f||_0 + ||y_g||_0 < 1/M$, then the reconstruction is correct.
- ▶ In practice, the assumption $||y_f||_0 + ||y_g||_0 < 1/M$ is almost never satisfied, and so the above argument remains only a theoretical speculation.

Why does writing $f = A_f y_f$ and $g = A_g y_g$ give the correct reconstruction?

• (Uncertainty principle) If $h \neq 0$ has the representations $h = Ay_A = By_B$ w. r. t. two orthonormal bases $A = [a_1, \ldots, a_n]$ and $B = [b_1, \ldots, b_n]$, then

$$||y_A||_0 + ||y_B||_0 \ge 2/M,$$

where $M = \max_{i,j} |(a_i, b_j)_2|$ is the *mutual coherence*. $(M = 1/\sqrt{n}$ with spikes and sinusoids.)

- ▶ If f and g have representations y_f and y_g satisfying $||y_f||_0 + ||y_g||_0 < 1/M$, then the reconstruction is correct.
- ▶ In practice, the assumption $||y_f||_0 + ||y_g||_0 < 1/M$ is almost never satisfied, and so the above argument remains only a theoretical speculation.

Why does writing $f = A_f y_f$ and $g = A_g y_g$ give the correct reconstruction?

• (Uncertainty principle) If $h \neq 0$ has the representations $h = Ay_A = By_B$ w. r. t. two orthonormal bases $A = [a_1, \ldots, a_n]$ and $B = [b_1, \ldots, b_n]$, then

$$||y_A||_0 + ||y_B||_0 \ge 2/M,$$

where $M = \max_{i,j} |(a_i, b_j)_2|$ is the *mutual coherence*. $(M = 1/\sqrt{n}$ with spikes and sinusoids.)

- ▶ If f and g have representations y_f and y_g satisfying $||y_f||_0 + ||y_g||_0 < 1/M$, then the reconstruction is correct.
- In practice, the assumption $||y_f||_0 + ||y_g||_0 < 1/M$ is almost never satisfied, and so the above argument remains only a theoretical speculation.

Why does writing $f = A_f y_f$ and $g = A_g y_g$ give the correct reconstruction?

• (Uncertainty principle) If $h \neq 0$ has the representations $h = Ay_A = By_B$ w. r. t. two orthonormal bases $A = [a_1, \ldots, a_n]$ and $B = [b_1, \ldots, b_n]$, then

$$||y_A||_0 + ||y_B||_0 \ge 2/M,$$

where $M = \max_{i,j} |(a_i, b_j)_2|$ is the *mutual coherence*. $(M = 1/\sqrt{n}$ with spikes and sinusoids.)

- ▶ If f and g have representations y_f and y_g satisfying $||y_f||_0 + ||y_g||_0 < 1/M$, then the reconstruction is correct.
- ▶ In practice, the assumption $||y_f||_0 + ||y_g||_0 < 1/M$ is almost never satisfied, and so the above argument remains only a theoretical speculation.

Why does writing $f = A_f y_f$ and $g = A_g y_g$ give the correct reconstruction?

• (Uncertainty principle) If $h \neq 0$ has the representations $h = Ay_A = By_B$ w. r. t. two orthonormal bases $A = [a_1, \ldots, a_n]$ and $B = [b_1, \ldots, b_n]$, then

$$||y_A||_0 + ||y_B||_0 \ge 2/M,$$

where $M = \max_{i,j} |(a_i, b_j)_2|$ is the *mutual coherence*. $(M = 1/\sqrt{n}$ with spikes and sinusoids.)

- ▶ If f and g have representations y_f and y_g satisfying $||y_f||_0 + ||y_g||_0 < 1/M$, then the reconstruction is correct.
- ▶ In practice, the assumption $||y_f||_0 + ||y_g||_0 < 1/M$ is almost never satisfied, and so the above argument remains only a theoretical speculation.

Let

$h_i = \mathbf{f} + g_i \in \mathbb{R}^n, \qquad i = 1, \dots, N$

be N measurements. The problem is to recover f and the g_i 's.

- ▶ Let $A_f \in \mathbb{R}^{n \times m_f}$ and $A_g \in \mathbb{R}^{n \times m_g}$ be two dictionaries as before. Assume that A_g is an orthonormal set (and that A_f is an orthonormal basis). In our applications:
 - $A_f = \text{Haar wavelets},$
 - $A_g =$ low frequency sinusoids.
- The reconstruction method applied here consists in the minimisation of

$$\min_{y \in \mathbb{R}^{m_f + N_{m_g}}} \|y\|_0 \quad \text{subject to } \left\| [A_f, A_g] \begin{bmatrix} y_f \\ y_g^i \end{bmatrix} - h_i \right\|_2 \le \varepsilon, \ i = 1, \dots, N,$$

where $y = {}^{t}[{}^{t}y_{f}, {}^{t}y_{g}^{1}, \dots, {}^{t}y_{g}^{N}].$

- The noisy case: $h_i = f + g_i + n_i$, $||n_i||_2 \le \eta$ for some $\eta > 0$.
- Why does this provide a better reconstruction?

Let

$$h_i = f + g_i \in \mathbb{R}^n, \qquad i = 1, \dots, N$$

be N measurements. The problem is to recover f and the g_i 's.

- ▶ Let $A_f \in \mathbb{R}^{n \times m_f}$ and $A_g \in \mathbb{R}^{n \times m_g}$ be two dictionaries as before. Assume that A_g is an orthonormal set (and that A_f is an orthonormal basis). In our applications:
 - ▶ A_f = Haar wavelets,
 - $A_g =$ low frequency sinusoids.

The reconstruction method applied here consists in the minimisation of

 $\min_{y \in \mathbb{R}^{m_f + N_{m_g}}} \|y\|_0 \quad \text{subject to } \left\| [A_f, A_g] \begin{bmatrix} y_f \\ y_g^i \end{bmatrix} - h_i \right\|_2 \le \varepsilon, \ i = 1, \dots, N,$

where $y = {}^{t}[{}^{t}y_{f}, {}^{t}y_{g}^{1}, \dots, {}^{t}y_{g}^{N}].$

• The noisy case: $h_i = f + g_i + n_i$, $||n_i||_2 \le \eta$ for some $\eta > 0$.

Why does this provide a better reconstruction?

Let

$$h_i = f + g_i \in \mathbb{R}^n, \qquad i = 1, \dots, N$$

be N measurements. The problem is to recover f and the g_i 's.

- ▶ Let $A_f \in \mathbb{R}^{n \times m_f}$ and $A_g \in \mathbb{R}^{n \times m_g}$ be two dictionaries as before. Assume that A_g is an orthonormal set (and that A_f is an orthonormal basis). In our applications:
 - ▶ A_f = Haar wavelets,
 - $A_g =$ low frequency sinusoids.
- > The reconstruction method applied here consists in the minimisation of

$$\min_{y \in \mathbb{R}^{m_f + N_{m_g}}} \|y\|_0 \quad \text{subject to } \left\| [A_f, A_g] \begin{bmatrix} y_f \\ y_g^i \end{bmatrix} - h_i \right\|_2 \le \varepsilon, \ i = 1, \dots, N,$$

where
$$y = {}^{t}[{}^{t}y_{f}, {}^{t}y_{g}^{1}, \dots, {}^{t}y_{g}^{N}].$$

• The noisy case: $h_i = f + g_i + n_i$, $||n_i||_2 \le \eta$ for some $\eta > 0$.

Why does this provide a better reconstruction?

Let

$$h_i = f + g_i \in \mathbb{R}^n, \qquad i = 1, \dots, N$$

be N measurements. The problem is to recover f and the g_i 's.

- ▶ Let $A_f \in \mathbb{R}^{n \times m_f}$ and $A_g \in \mathbb{R}^{n \times m_g}$ be two dictionaries as before. Assume that A_g is an orthonormal set (and that A_f is an orthonormal basis). In our applications:
 - ▶ A_f = Haar wavelets,
 - $A_g =$ low frequency sinusoids.
- > The reconstruction method applied here consists in the minimisation of

$$\min_{y \in \mathbb{R}^{m_f + N_{m_g}}} \|y\|_0 \quad \text{subject to } \left\| [A_f, A_g] \begin{bmatrix} y_f \\ y_g^i \end{bmatrix} - h_i \right\|_2 \le \varepsilon, \ i = 1, \dots, N,$$

where
$$y = {}^{t}[{}^{t}y_{f}, {}^{t}y_{g}^{1}, \dots, {}^{t}y_{g}^{N}].$$

• The noisy case: $h_i = \mathbf{f} + g_i + n_i$, $||n_i||_2 \le \eta$ for some $\eta > 0$.

Why does this provide a better reconstruction?
Multi-measurement case

Let

$$h_i = f + g_i \in \mathbb{R}^n, \qquad i = 1, \dots, N$$

be N measurements. The problem is to recover f and the g_i 's.

- ▶ Let $A_f \in \mathbb{R}^{n \times m_f}$ and $A_g \in \mathbb{R}^{n \times m_g}$ be two dictionaries as before. Assume that A_g is an orthonormal set (and that A_f is an orthonormal basis). In our applications:
 - ▶ A_f = Haar wavelets,
 - $A_g =$ low frequency sinusoids.
- > The reconstruction method applied here consists in the minimisation of

$$\min_{y \in \mathbb{R}^{m_f + N_{m_g}}} \|y\|_0 \quad \text{subject to } \left\| [A_f, A_g] \begin{bmatrix} y_f \\ y_g^i \end{bmatrix} - h_i \right\|_2 \le \varepsilon, \ i = 1, \dots, N,$$

where $y = {}^{t}[{}^{t}y_{f}, {}^{t}y_{g}^{1}, \dots, {}^{t}y_{g}^{N}].$

- ▶ The noisy case: $h_i = f + g_i + n_i$, $||n_i||_2 \le \eta$ for some $\eta > 0$.
- Why does this provide a better reconstruction?

- ▶ In the applications we have in mind, we shall have (indirect) control on the g_i's.
- We need enough incoherent data: this is measured by their disjoint sparsity.
- Write for some $\rho_f, \rho_g > 0$:

$$\left\|f - A_f \tilde{y}_f\right\|_2 \le \rho_f \quad \text{and} \quad \left\|g_i - A_g \tilde{y}_g^i\right\|_2 \le \rho_g.$$

Take β , D > 0. Assume that:

1. if $|\tilde{y}_{g}^{i}(\alpha) - \tilde{y}_{g}^{j}(\alpha)| \leq \beta$ and $\tilde{y}_{g}^{i}(\alpha)\tilde{y}_{g}^{j}(\alpha) \neq 0$ for some α then i = j;

2. for every $p \in \mathbb{R}^n$ such that $\|p\|_2 > D$ and $\|tA_g^{\perp}p\|_2 \le 2/3$ there holds $\#(\operatorname{supp} tA_f p \setminus \operatorname{supp} \tilde{y}_f) + \sum_{i=1}^N \#(\{\alpha : |(tA_g p)(\alpha)| \ge 1\} \setminus \operatorname{supp} \tilde{y}_g^i) > \#\bigcup_{i=1}^N \operatorname{supp} \tilde{y}_g^i + \|\tilde{y}_f\|_0.$

- ▶ 1 is mainly a technical assumption.
- ▶ 2 is at the core of the approach: multiple and disjointly sparse measurements \tilde{y}_a^i make it easy to be satisfied.

- In the applications we have in mind, we shall have (indirect) control on the g_i's.
- ▶ We need enough incoherent data: this is measured by their disjoint sparsity.
- Write for some $\rho_f, \rho_g > 0$:

$$\left\|f - A_f \tilde{y}_f\right\|_2 \le \rho_f \quad \text{and} \quad \left\|g_i - A_g \tilde{y}_g^i\right\|_2 \le \rho_g.$$

Take $\beta, D > 0$. Assume that: 1. if $|\tilde{y}_g^i(\alpha) - \tilde{y}_g^j(\alpha)| \le \beta$ and $\tilde{y}_g^i(\alpha) \tilde{y}_g^j(\alpha) \ne 0$ for some α then i = j; 2. for every $p \in \mathbb{R}^n$ such that $\|p\|_2 > D$ and $\|{}^tA_g^{\perp}p\|_2 \le 2/3$ there holds $\#(\operatorname{supp}{}^tA_fp \setminus \operatorname{supp} \tilde{y}_f) + \sum_{i=1}^N \#(\{\alpha : |({}^tA_gp)(\alpha)| \ge 1\} \setminus \operatorname{supp} \tilde{y}_g^i) > \# \bigcup_{i=1}^N \operatorname{supp} \tilde{y}_g^i + \|\tilde{y}_f\|_0.$

- ▶ 1 is mainly a technical assumption.
- ▶ 2 is at the core of the approach: multiple and disjointly sparse measurements \tilde{y}_{a}^{i} make it easy to be satisfied.

- ▶ In the applications we have in mind, we shall have (indirect) control on the g_i's.
- We need enough incoherent data: this is measured by their disjoint sparsity.
- Write for some $\rho_f, \rho_g > 0$:

$$\left\| \boldsymbol{f} - A_f \tilde{y}_f \right\|_2 \leq \rho_f \quad \text{and} \quad \left\| \boldsymbol{g}_i - A_g \tilde{y}_g^i \right\|_2 \leq \rho_g.$$

Take $\beta, D > 0$. Assume that: 1. if $|\tilde{y}_g^i(\alpha) - \tilde{y}_g^j(\alpha)| \le \beta$ and $\tilde{y}_g^i(\alpha) \tilde{y}_g^j(\alpha) \ne 0$ for some α then i = j; 2. for every $p \in \mathbb{R}^n$ such that $\|p\|_2 > D$ and $\|{}^tA_g^{\perp}p\|_2 \le 2/3$ there holds $\#(\operatorname{supp}{}^tA_fp \setminus \operatorname{supp} \tilde{y}_f) + \sum_{i=1}^N \#(\{\alpha : |({}^tA_gp)(\alpha)| \ge 1\} \setminus \operatorname{supp} \tilde{y}_g^i) > \#\bigcup_{i=1}^N \operatorname{supp} \tilde{y}_g^i + \|\tilde{y}_f\|_0.$

- ▶ 1 is mainly a technical assumption.
- ▶ 2 is at the core of the approach: multiple and disjointly sparse measurements \tilde{y}_{a}^{i} make it easy to be satisfied.

- ▶ In the applications we have in mind, we shall have (indirect) control on the g_i's.
- We need enough incoherent data: this is measured by their disjoint sparsity.
- Write for some $\rho_f, \rho_g > 0$:

$$\left\| \boldsymbol{f} - A_f \tilde{y}_f \right\|_2 \leq \rho_f \quad \text{and} \quad \left\| \boldsymbol{g}_i - A_g \tilde{y}_g^i \right\|_2 \leq \rho_g.$$

Take $\beta, D > 0$. Assume that: 1. if $|\tilde{y}_g^i(\alpha) - \tilde{y}_g^j(\alpha)| \le \beta$ and $\tilde{y}_g^i(\alpha) \tilde{y}_g^j(\alpha) \ne 0$ for some α then i = j; 2. for every $p \in \mathbb{R}^n$ such that $||p||_2 > D$ and $||^t A_g^\perp p||_2 \le 2/3$ there holds $\#(\operatorname{supp}{}^t A_f p \setminus \operatorname{supp} \tilde{y}_f) + \sum_{i=1}^N \#(\{\alpha : |(^t A_g p)(\alpha)| \ge 1\} \setminus \operatorname{supp} \tilde{y}_g^i) > \# \bigcup_{i=1}^N \operatorname{supp} \tilde{y}_g^i + ||\tilde{y}_f||_0$.

- ▶ 1 is mainly a technical assumption.
- ▶ 2 is at the core of the approach: multiple and disjointly sparse measurements \tilde{y}_a^i make it easy to be satisfied.

- In the applications we have in mind, we shall have (indirect) control on the g_i 's.
- > We need enough incoherent data: this is measured by their disjoint sparsity.
- Write for some $\rho_f, \rho_g > 0$:

$$\left\| \boldsymbol{f} - A_f \tilde{y}_f \right\|_2 \leq \rho_f \quad \text{and} \quad \left\| \boldsymbol{g}_i - A_g \tilde{y}_g^i \right\|_2 \leq \rho_g.$$

Take
$$\beta, D > 0$$
. Assume that:
1. if $|\tilde{y}_g^i(\alpha) - \tilde{y}_g^j(\alpha)| \le \beta$ and $\tilde{y}_g^i(\alpha) \tilde{y}_g^j(\alpha) \ne 0$ for some α then $i = j$;
2. for every $p \in \mathbb{R}^n$ such that $\|p\|_2 > D$ and $\|{}^tA_g^{\perp}p\|_2 \le 2/3$ there holds
 $\#(\operatorname{supp}{}^tA_fp \setminus \operatorname{supp} \tilde{y}_f) + \sum_{i=1}^N \#(\{\alpha : |({}^tA_gp)(\alpha)| \ge 1\} \setminus \operatorname{supp} \tilde{y}_g^i) > \#\bigcup_{i=1}^N \operatorname{supp} \tilde{y}_g^i + \|\tilde{y}_f\|_0$.

- ▶ 1 is mainly a technical assumption.
- ▶ 2 is at the core of the approach: multiple and disjointly sparse measurements \tilde{y}_a^i make it easy to be satisfied.

- In the applications we have in mind, we shall have (indirect) control on the g_i 's.
- > We need enough incoherent data: this is measured by their disjoint sparsity.
- Write for some $\rho_f, \rho_g > 0$:

$$\left\| \boldsymbol{f} - A_f \tilde{y}_f \right\|_2 \leq \rho_f \quad \text{and} \quad \left\| g_i - A_g \tilde{y}_g^i \right\|_2 \leq \rho_g.$$

Take
$$\beta$$
, $D > 0$. Assume that:
1. if $|\tilde{y}_g^i(\alpha) - \tilde{y}_g^j(\alpha)| \leq \beta$ and $\tilde{y}_g^i(\alpha)\tilde{y}_g^j(\alpha) \neq 0$ for some α then $i = j$;
2. for every $p \in \mathbb{R}^n$ such that $\|p\|_2 > D$ and $\|{}^tA_g^{\perp}p\|_2 \leq 2/3$ there holds
 $\#(\operatorname{supp}{}^tA_fp \setminus \operatorname{supp} \tilde{y}_f) + \sum_{i=1}^N \#(\{\alpha : |({}^tA_gp)(\alpha)| \geq 1\} \setminus \operatorname{supp} \tilde{y}_g^i) > \# \bigcup_{i=1}^N \operatorname{supp} \tilde{y}_g^i + \|\tilde{y}_f\|_0$.

▶ 1 is mainly a technical assumption.

▶ 2 is at the core of the approach: multiple and disjointly sparse measurements \tilde{y}_{q}^{i} make it easy to be satisfied.

- In the applications we have in mind, we shall have (indirect) control on the g_i 's.
- > We need enough incoherent data: this is measured by their disjoint sparsity.
- Write for some $\rho_f, \rho_g > 0$:

$$\left\| f - A_f \tilde{y}_f \right\|_2 \le
ho_f$$
 and $\left\| g_i - A_g \tilde{y}_g^i \right\|_2 \le
ho_g$.

Take
$$\beta$$
, $D > 0$. Assume that:
1. if $|\tilde{y}_g^i(\alpha) - \tilde{y}_g^j(\alpha)| \le \beta$ and $\tilde{y}_g^i(\alpha)\tilde{y}_g^j(\alpha) \ne 0$ for some α then $i = j$;
2. for every $p \in \mathbb{R}^n$ such that $\|p\|_2 > D$ and $\|{}^tA_g^{\perp}p\|_2 \le 2/3$ there holds
 $\#(\operatorname{supp}{}^tA_fp \setminus \operatorname{supp} \tilde{y}_f) + \sum_{i=1}^N \#(\{\alpha : |({}^tA_gp)(\alpha)| \ge 1\} \setminus \operatorname{supp} \tilde{y}_g^i) > \#\bigcup_{i=1}^N \operatorname{supp} \tilde{y}_g^i + \|\tilde{y}_f\|_0$.

- ▶ 1 is mainly a technical assumption.
- ▶ 2 is at the core of the approach: multiple and disjointly sparse measurements \tilde{y}_a^i make it easy to be satisfied.

- In the applications we have in mind, we shall have (indirect) control on the g_i 's.
- ▶ We need enough incoherent data: this is measured by their disjoint sparsity.
- Write for some $\rho_f, \rho_g > 0$:

$$\left\| \mathbf{f} - A_f \tilde{y}_f \right\|_2 \le \rho_f \quad \text{and} \quad \left\| g_i - A_g \tilde{y}_g^i \right\|_2 \le \rho_g.$$

Take
$$\beta, D > 0$$
. Assume that:
1. if $|\tilde{y}_g^i(\alpha) - \tilde{y}_g^j(\alpha)| \le \beta$ and $\tilde{y}_g^i(\alpha) \tilde{y}_g^j(\alpha) \ne 0$ for some α then $i = j$;
2. for every $p \in \mathbb{R}^n$ such that $\|p\|_2 > D$ and $\|{}^tA_g^{\perp}p\|_2 \le 2/3$ there holds
 $\#(\operatorname{supp}{}^tA_fp \setminus \operatorname{supp} \tilde{y}_f) + \sum_{i=1}^N \#(\{\alpha : |({}^tA_gp)(\alpha)| \ge 1\} \setminus \operatorname{supp} \tilde{y}_g^i) > \# \bigcup_{i=1}^N \operatorname{supp} \tilde{y}_g^i + \|\tilde{y}_f\|_0$.

- ▶ 1 is mainly a technical assumption.
- ▶ 2 is at the core of the approach: multiple and disjointly sparse measurements \tilde{y}^i_q make it easy to be satisfied.

- In the applications we have in mind, we shall have (indirect) control on the g_i 's.
- ▶ We need enough incoherent data: this is measured by their disjoint sparsity.
- Write for some $\rho_f, \rho_g > 0$:

$$\left\| \mathbf{f} - A_f \tilde{y}_f \right\|_2 \le \rho_f \quad \text{and} \quad \left\| g_i - A_g \tilde{y}_g^i \right\|_2 \le \rho_g.$$

Take
$$\beta, D > 0$$
. Assume that:
1. if $|\tilde{y}_g^i(\alpha) - \tilde{y}_g^j(\alpha)| \le \beta$ and $\tilde{y}_g^i(\alpha) \tilde{y}_g^j(\alpha) \ne 0$ for some α then $i = j$;
2. for every $p \in \mathbb{R}^n$ such that $\|p\|_2 > D$ and $\|{}^tA_g^{\perp}p\|_2 \le 2/3$ there holds
 $\#(\operatorname{supp}{}^tA_f p \setminus \operatorname{supp} \tilde{y}_f) + \sum_{i=1}^N \#(\{\alpha : |({}^tA_g p)(\alpha)| \ge 1\} \setminus \operatorname{supp} \tilde{y}_g^i) > m_g + \|\tilde{y}_f\|_0.$

- ▶ 1 is mainly a technical assumption.
- ▶ 2 is at the core of the approach: multiple and disjointly sparse measurements \tilde{y}^i_q make it easy to be satisfied.

2. ... for every $p \in \mathbb{R}^n$ such that $\|p\|_2 > D$ and $\|{}^tA_g^{\perp}p\|_2 \le 2/3$ there holds $\#(\operatorname{supp}{}^tA_fp \setminus \operatorname{supp} \tilde{y}_f) + \sum_{i=1}^N \#(\{\alpha : |({}^tA_gp)(\alpha)| \ge 1\} \setminus \operatorname{supp} \tilde{y}_g^i) > m_g + \|\tilde{y}_f\|_0.$

• "Classical". If M is the mutual coherence of A_f and A_g :

 $\| {}^{t}A_{f}p \|_{0} + \| {}^{t}A_{g}p \|_{0} \ge 2/M.$

▶ "Normalised". $\exists D > 0$ s.t. for all $p \in \mathbb{R}^n$ with $||p||_2 > D$ and $||^t A_g^{\perp} p||_2 \le 2/3$ $||^t A_f p||_0 + \#\{\alpha : |(^t A_g p)(\alpha)| \ge 1\} \ge 2/M.$

Unfortunately, $M \sim 1$ if A_f consists of wavelets and A_g of sinusoids...

• "Haar wavelets". Let A_f be the orthobasis of 2D Haar wavelets in $\mathbb{R}^{2^7 \times 2^7}$ and let A_q be 960 low frequency non-constant sinusoids. There exists D > 0 s.t.

$$\left\| {}^{t}A_{f}p \right\|_{0} \ge 1160,$$

for every $p \in \mathbb{R}^n$ such that $\|p\|_2 > D$ and $\|{}^tA_g^{\perp}p\|_2 \le 2/3$.

- 2. ... for every $p \in \mathbb{R}^n$ such that $\|p\|_2 > D$ and $\|{}^tA_g^{\perp}p\|_2 \le 2/3$ there holds $\#(\operatorname{supp}{}^tA_fp \setminus \operatorname{supp} \tilde{y}_f) + \sum_{i=1}^N \#(\{\alpha : |({}^tA_gp)(\alpha)| \ge 1\} \setminus \operatorname{supp} \tilde{y}_g^i) > m_g + \|\tilde{y}_f\|_0.$
 - "Classical". If M is the mutual coherence of A_f and A_g :

 $\| {}^{t}A_{f}p \|_{0} + \| {}^{t}A_{g}p \|_{0} \ge 2/M.$

▶ "Normalised". $\exists D > 0$ s.t. for all $p \in \mathbb{R}^n$ with $||p||_2 > D$ and $||^t A_g^{\perp} p||_2 \le 2/3$ $||^t A_f p||_0 + \#\{\alpha : |(^t A_g p)(\alpha)| \ge 1\} \ge 2/M.$

Unfortunately, $M \sim 1$ if A_f consists of wavelets and A_g of sinusoids...

• "Haar wavelets". Let A_f be the orthobasis of 2D Haar wavelets in $\mathbb{R}^{2^7 \times 2^7}$ and let A_q be 960 low frequency non-constant sinusoids. There exists D > 0 s.t.

$$\left\| {}^{t}A_{f}p \right\|_{0} \ge 1160,$$

for every $p \in \mathbb{R}^n$ such that $\|p\|_2 > D$ and $\|{}^tA_g^{\perp}p\|_2 \le 2/3$.

- 2. ... for every $p \in \mathbb{R}^n$ such that $\|p\|_2 > D$ and $\|tA_q^{\perp}p\|_2 \le 2/3$ there holds $\#\left(\operatorname{supp}{}^{t}\!A_{f}p\setminus\operatorname{supp}{}\tilde{y}_{f}\right)+\sum_{i=1}^{N}\#\left(\left\{\alpha:|({}^{t}\!A_{g}p)(\alpha)|\geq1\right\}\setminus\operatorname{supp}{}\tilde{y}_{g}^{i}\right)>m_{g}+\left\|\tilde{y}_{f}\right\|_{0}.$
 - "Classical". If M is the mutual coherence of A_f and A_q :

 $||^{t}A_{f}p||_{0} + ||^{t}A_{a}p||_{0} \geq 2/M.$

▶ "Normalised". $\exists D > 0$ s.t. for all $p \in \mathbb{R}^n$ with $\|p\|_2 > D$ and $\|{}^tA_a^{\perp}p\|_2 \le 2/3$ $\| {}^{t}A_{f}p \|_{\alpha} + \#\{\alpha : |({}^{t}A_{g}p)(\alpha)| \ge 1\} \ge 2/M.$

• "Haar wavelets". Let A_f be the orthobasis of 2D Haar wavelets in $\mathbb{R}^{2^7 \times 2^7}$ and

$$\left\| {}^{t}A_{f}p \right\|_{0} \ge 1160,$$

- 2. ... for every $p \in \mathbb{R}^n$ such that $\|p\|_2 > D$ and $\|{}^tA_g^{\perp}p\|_2 \le 2/3$ there holds $\#(\operatorname{supp}{}^tA_fp \setminus \operatorname{supp} \tilde{y}_f) + \sum_{i=1}^N \#(\{\alpha : |({}^tA_gp)(\alpha)| \ge 1\} \setminus \operatorname{supp} \tilde{y}_g^i) > m_g + \|\tilde{y}_f\|_0.$
 - "Classical". If M is the mutual coherence of A_f and A_g :

$$\| {}^{t}A_{f}p \|_{0} + \| {}^{t}A_{g}p \|_{0} \ge 2/M.$$

► "Normalised". $\exists D > 0 \text{ s.t. for all } p \in \mathbb{R}^n \text{ with } \|p\|_2 > D \text{ and } \|{}^tA_g^{\perp}p\|_2 \le 2/3$ $\|{}^tA_fp\|_0 + \#\{\alpha : |({}^tA_gp)(\alpha)| \ge 1\} \ge 2/M.$

Unfortunately, $M \sim 1$ if A_f consists of wavelets and A_g of sinusoids...

• "Haar wavelets". Let A_f be the orthobasis of 2D Haar wavelets in $\mathbb{R}^{2^7 \times 2^7}$ and let A_g be 960 low frequency non-constant sinusoids. There exists D > 0 s.t.

 $\left\| {}^{t}A_{f}p \right\|_{0} \ge 1160,$

for every $p \in \mathbb{R}^n$ such that $\|p\|_2 > D$ and $\|{}^tA_g^{\perp}p\|_2 \le 2/3$.

- 2. ... for every $p \in \mathbb{R}^n$ such that $\|p\|_2 > D$ and $\|{}^tA_g^{\perp}p\|_2 \le 2/3$ there holds $\#(\operatorname{supp}{}^tA_fp \setminus \operatorname{supp} \tilde{y}_f) + \sum_{i=1}^N \#(\{\alpha : |({}^tA_gp)(\alpha)| \ge 1\} \setminus \operatorname{supp} \tilde{y}_g^i) > m_g + \|\tilde{y}_f\|_0.$
 - "Classical". If M is the mutual coherence of A_f and A_g :

$$\| {}^{t}A_{f}p \|_{0} + \| {}^{t}A_{g}p \|_{0} \ge 2/M.$$

► "Normalised". $\exists D > 0 \text{ s.t. for all } p \in \mathbb{R}^n \text{ with } \|p\|_2 > D \text{ and } \|{}^tA_g{}^{\perp}p\|_2 \le 2/3$ $\|{}^tA_fp\|_0 + \#\{\alpha : |({}^tA_gp)(\alpha)| \ge 1\} \gtrsim 2.$

Unfortunately, $M \sim 1$ if A_f consists of wavelets and A_g of sinusoids...

• "Haar wavelets". Let A_f be the orthobasis of 2D Haar wavelets in $\mathbb{R}^{2^7 \times 2^7}$ and let A_g be 960 low frequency non-constant sinusoids. There exists D > 0 s.t.

 $\left\| {}^{t}A_{f}p \right\|_{0} \ge 1160,$

for every $p \in \mathbb{R}^n$ such that $\|p\|_2 > D$ and $\|{}^tA_g^{\perp}p\|_2 \le 2/3$.

- 2. ... for every $p \in \mathbb{R}^n$ such that $\|p\|_2 > D$ and $\|{}^tA_g^{\perp}p\|_2 \le 2/3$ there holds $\#(\operatorname{supp}{}^tA_fp \setminus \operatorname{supp} \tilde{y}_f) + \sum_{i=1}^N \#(\{\alpha : |({}^tA_gp)(\alpha)| \ge 1\} \setminus \operatorname{supp} \tilde{y}_g^i) > m_g + \|\tilde{y}_f\|_0.$
 - "Classical". If M is the mutual coherence of A_f and A_g :

$$\| {}^{t}A_{f}p \|_{0} + \| {}^{t}A_{g}p \|_{0} \ge 2/M.$$

► "Normalised". $\exists D > 0 \text{ s.t. for all } p \in \mathbb{R}^n \text{ with } \|p\|_2 > D \text{ and } \|{}^tA_g{}^{\perp}p\|_2 \le 2/3$ $\|{}^tA_fp\|_0 + \#\{\alpha : |({}^tA_gp)(\alpha)| \ge 1\} \gtrsim 2.$

Unfortunately, $M \sim 1$ if A_f consists of wavelets and A_g of sinusoids...

▶ "Haar wavelets". Let A_f be the orthobasis of 2D Haar wavelets in $\mathbb{R}^{2^7 \times 2^7}$ and let A_g be 960 low frequency non-constant sinusoids. There exists D > 0 s.t.

$$\left\| {}^{t}\!A_{f}p \right\|_{0} \ge 1160,$$

13 / 24

for every $p \in \mathbb{R}^n$ such that $\left\|p\right\|_2 > D$ and $\left\|{}^tA_g^{\perp}p\right\|_2 \le 2/3$.

Main result

The following result states that the separation method with multiple measurements gives unique and stable reconstruction.

Theorem

Assume 1 and 2 and that $\varepsilon := \rho_f + \rho_g + \eta \leq \beta/3$. Assume that $f, g_i, n_i \in \mathbb{R}^n$ satisfy $||n_i||_2 \leq \eta$ and

$$\left\|A_f \tilde{y}_f - f\right\|_2 \le \rho_f, \quad \left\|A_g \tilde{y}_g^i - g_i\right\|_2 \le \rho_g, \qquad i = 1, \dots, N$$

and let $y_f \in \mathbb{R}^{m_f}$ and $y_g^i \in \mathbb{R}^{m_g}$ realise the minimum of

$$\begin{split} \min_{y \in \mathbb{R}^{m_f + N_{m_g}}} \|y\|_0 \quad \text{subject to } \left\| [A_f, A_g] \begin{bmatrix} y_f \\ y_g^i \end{bmatrix} - h_i \right\|_2 &\leq \varepsilon, \ i = 1, \dots, N, \\ \text{where } h_i &= \mathbf{f} + g_i + n_i. \text{ Then} \\ \left\| A_f y_f - \mathbf{f} \right\|_2 &\leq (3D+1)\varepsilon, \quad \left\| A_g y_g^i - g_i \right\|_2 \leq (3D+2)\varepsilon, \qquad i = 1, \dots, N. \end{split}$$

Outline of the talk

Introduction to hybrid imaging inverse problems

Disjoint sparsity for signal separation

3 Applications to quantitative photoacoustic tomography

It gives us the image $H(x) = \Gamma(x)\mu(x)u(x) = \mu(x)u(x)$. Need to find μ .

In the general case $\Gamma \neq 1$, apply the same approach and find $\Gamma \mu$ and u. Then by using the PDE approach all the unknowns can be reconstructed.

Giovanni S Alberti (SAM, ETH Zurich) Disjoint sparsity and hybrid inverse problems UCL, October 9, 2015 16 / 24

It gives us the image $H(x) = \Gamma(x)\mu(x)u(x) = \mu(x)u(x)$. Need to find μ .

In the general case $\Gamma \neq 1$, apply the same approach and find $\Gamma \mu$ and u. Then by using the PDE approach all the unknowns can be reconstructed.

It gives us the image $H(x) = \Gamma(x)\mu(x)u(x) = \mu(x)u(x)$. Need to find μ .

In the general case $\Gamma \neq 1$, apply the same approach and find $\Gamma \mu$ and u. Then by using the PDE approach all the unknowns can be reconstructed.

• Multi-measurement data: $H(x) = \mu(x)u_i(x)$, where

$$\begin{cases} -\Delta u_i + \mu u_i = 0 & \text{in } \Omega, \\ u_i = \varphi_i & \text{on } \partial \Omega. \end{cases}$$

- Taking a log: $h_i = \log \mu + \log u_i$.
- The above method may be used if $\log \mu$ and $\log u_i$ can be sparsely represented with respect to two different dictionaries.
- ► Following [Rosenthal, Razansky, Ntziachristos, 2009], observe that:
 - the light absorption µ is a constitutive parameter of the tissue, and as such is discontinuous. Its discontinuities are typically the inclusions we are looking for;
 - the light intensity u_i is a solution of a PDE, and as such enjoys higher regularity properties.
- ▶ Thus, the uncertainty principle motivates these for the dictionaries:
 - ► A_f: Haar wavelets (curvelets, ridgelets, shearlets...)
 - ► A_g: low frequency trigonometric polynomials (constant included!)
- The disjoint sparsity signal separation method may be used to recover μ .

• Multi-measurement data: $H(x) = \mu(x)u_i(x)$, where

$$\begin{cases} -\Delta u_i + \mu u_i = 0 & \text{in } \Omega, \\ u_i = \varphi_i & \text{on } \partial \Omega. \end{cases}$$

• Taking a log: $h_i = \log \mu + \log u_i$.

- ► The above method may be used if log µ and log u_i can be sparsely represented with respect to two different dictionaries.
- ► Following [Rosenthal, Razansky, Ntziachristos, 2009], observe that:
 - the light absorption μ is a constitutive parameter of the tissue, and as such is discontinuous. Its discontinuities are typically the inclusions we are looking for;
 - the light intensity u_i is a solution of a PDE, and as such enjoys higher regularity properties.
- ▶ Thus, the uncertainty principle motivates these for the dictionaries:
 - ► A_f: Haar wavelets (curvelets, ridgelets, shearlets...)
 - ► A_g: low frequency trigonometric polynomials (constant included!)

• The disjoint sparsity signal separation method may be used to recover μ .

• Multi-measurement data: $H(x) = \mu(x)u_i(x)$, where

$$\begin{cases} -\Delta u_i + \mu u_i = 0 & \text{in } \Omega, \\ u_i = \varphi_i & \text{on } \partial \Omega. \end{cases}$$

- Taking a log: $h_i = \log \mu + \log u_i$.
- ► The above method may be used if $\log \mu$ and $\log u_i$ can be sparsely represented with respect to two different dictionaries.
- ► Following [Rosenthal, Razansky, Ntziachristos, 2009], observe that:
 - the light absorption μ is a constitutive parameter of the tissue, and as such is discontinuous. Its discontinuities are typically the inclusions we are looking for;
 - the light intensity u_i is a solution of a PDE, and as such enjoys higher regularity properties.
- ▶ Thus, the uncertainty principle motivates these for the dictionaries:
 - ► A_f: Haar wavelets (curvelets, ridgelets, shearlets...)
 - ► A_g: low frequency trigonometric polynomials (constant included!)

• The disjoint sparsity signal separation method may be used to recover μ .

• Multi-measurement data: $H(x) = \mu(x)u_i(x)$, where

$$\begin{cases} -\Delta u_i + \mu u_i = 0 & \text{in } \Omega, \\ u_i = \varphi_i & \text{on } \partial \Omega. \end{cases}$$

- Taking a log: $h_i = \log \mu + \log u_i$.
- ► The above method may be used if log µ and log u_i can be sparsely represented with respect to two different dictionaries.
- ▶ Following [Rosenthal, Razansky, Ntziachristos, 2009], observe that:
 - the light absorption μ is a constitutive parameter of the tissue, and as such is discontinuous. Its discontinuities are typically the inclusions we are looking for;
 - the light intensity u_i is a solution of a PDE, and as such enjoys higher regularity properties.
- ▶ Thus, the uncertainty principle motivates these for the dictionaries:
 - ► A_f: Haar wavelets (curvelets, ridgelets, shearlets...)
 - A_g: low frequency trigonometric polynomials (constant included!)
- The disjoint sparsity signal separation method may be used to recover μ .

• Multi-measurement data: $H(x) = \mu(x)u_i(x)$, where

$$\begin{cases} -\Delta u_i + \mu u_i = 0 & \text{in } \Omega, \\ u_i = \varphi_i & \text{on } \partial \Omega. \end{cases}$$

- Taking a log: $h_i = \log \mu + \log u_i$.
- ► The above method may be used if log µ and log u_i can be sparsely represented with respect to two different dictionaries.
- ▶ Following [Rosenthal, Razansky, Ntziachristos, 2009], observe that:
 - the light absorption μ is a constitutive parameter of the tissue, and as such is discontinuous. Its discontinuities are typically the inclusions we are looking for;
 - the light intensity u_i is a solution of a PDE, and as such enjoys higher regularity properties.
- > Thus, the uncertainty principle motivates these for the dictionaries:
 - ► A_f: Haar wavelets (curvelets, ridgelets, shearlets...)
 - ► *A_g*: low frequency trigonometric polynomials (constant included!)

• The disjoint sparsity signal separation method may be used to recover μ .

• Multi-measurement data: $H(x) = \mu(x)u_i(x)$, where

$$\begin{cases} -\Delta u_i + \mu u_i = 0 & \text{in } \Omega, \\ u_i = \varphi_i & \text{on } \partial \Omega. \end{cases}$$

- Taking a log: $h_i = \log \mu + \log u_i$.
- ► The above method may be used if log µ and log u_i can be sparsely represented with respect to two different dictionaries.
- ▶ Following [Rosenthal, Razansky, Ntziachristos, 2009], observe that:
 - the light absorption μ is a constitutive parameter of the tissue, and as such is discontinuous. Its discontinuities are typically the inclusions we are looking for;
 - the light intensity u_i is a solution of a PDE, and as such enjoys higher regularity properties.
- > Thus, the uncertainty principle motivates these for the dictionaries:
 - ► A_f: Haar wavelets (curvelets, ridgelets, shearlets...)
 - ► A_g: low frequency trigonometric polynomials (constant included!)

• The disjoint sparsity signal separation method may be used to recover μ .

• Multi-measurement data: $H(x) = \mu(x)u_i(x)$, where

$$\begin{cases} -\Delta u_i + \mu u_i = 0 & \text{in } \Omega, \\ u_i = \varphi_i & \text{on } \partial \Omega. \end{cases}$$

- Taking a log: $h_i = \log \mu + \log u_i$.
- ► The above method may be used if $\log \mu$ and $\log u_i$ can be sparsely represented with respect to two different dictionaries.
- ▶ Following [Rosenthal, Razansky, Ntziachristos, 2009], observe that:
 - the light absorption μ is a constitutive parameter of the tissue, and as such is discontinuous. Its discontinuities are typically the inclusions we are looking for;
 - the light intensity u_i is a solution of a PDE, and as such enjoys higher regularity properties.
- > Thus, the uncertainty principle motivates these for the dictionaries:
 - ► A_f: Haar wavelets (curvelets, ridgelets, shearlets...)
 - ► A_g: low frequency trigonometric polynomials (constant included!)
- The disjoint sparsity signal separation method may be used to recover μ .

Example 1: noise-free case, N = 1

Example 1: noise-free case, N = 1

Example 1: noisy case, N = 1, 3, 5

Giovanni S Alberti (SAM, ETH Zurich) Disjoint sparsity and hybrid inverse problems U

Example 2: the Shepp-Logan Phantom

Example 2: the Shepp-Logan Phantom with noise

Example 3: piecewise smooth

Example 4: lateral illuminations, N = 4

Conclusions

Past

- ► The reconstruction in QPAT (and in many hybrid imaging inverse problems) require the separation of several signals $h_i = f + g_i$.
- > PDE techniques are often powerful, but sometimes they are not applicable.

Present

- Multiple measurements and disjoint sparsity can be used to find f and g_i .
- Uniqueness and stability proven.
- Orthogonal matching pursuit performs well in many numerical simulations related to quantitative photoacoustic tomography.

Future

- ▶ How can we ensure that the light intensities u_i give the necessary incoherence, measured in terms of their disjoint sparsity? Random illuminations may help.
- $\blacktriangleright \text{ Norm } l^0 \rightarrow \text{ norm } l^1.$
- Robust uncertainty principles (Candes, Romberg, 2006)
Conclusions

Past

- ▶ The reconstruction in QPAT (and in many hybrid imaging inverse problems) require the separation of several signals $h_i = f + g_i$.
- > PDE techniques are often powerful, but sometimes they are not applicable.

Present

- Multiple measurements and disjoint sparsity can be used to find f and g_i .
- Uniqueness and stability proven.
- Orthogonal matching pursuit performs well in many numerical simulations related to quantitative photoacoustic tomography.

Future

- ▶ How can we ensure that the light intensities u_i give the necessary incoherence, measured in terms of their disjoint sparsity? Random illuminations may help.
- $\blacktriangleright \text{ Norm } l^0 \rightarrow \text{ norm } l^1.$
- Robust uncertainty principles (Candes, Romberg, 2006)

Conclusions

Past

- ▶ The reconstruction in QPAT (and in many hybrid imaging inverse problems) require the separation of several signals $h_i = f + g_i$.
- > PDE techniques are often powerful, but sometimes they are not applicable.

Present

- Multiple measurements and disjoint sparsity can be used to find f and g_i .
- Uniqueness and stability proven.
- Orthogonal matching pursuit performs well in many numerical simulations related to quantitative photoacoustic tomography.

Future

- ▶ How can we ensure that the light intensities u_i give the necessary incoherence, measured in terms of their disjoint sparsity? Random illuminations may help.
- ▶ Norm $l^0 \rightarrow \text{norm } l^1$.
- Robust uncertainty principles (Candes, Romberg, 2006)