Disjoint sparsity for signal separation and applications to hybrid imaging inverse problems

Giovanni S Alberti

Seminar for Applied Mathematics, ETH Zurich

University College London, October 9, 2015

ETH zürich

Outline

¹ [Introduction to hybrid imaging inverse problems](#page-2-0)

² [Disjoint sparsity for signal separation](#page-11-0)

³ [Applications to quantitative photoacoustic tomography](#page-53-0)

Giovanni S. Alberti and Habib Ammari. Disjoint sparsity for signal separation and applications to hybrid inverse problems in medical imaging. Applied and Computational Harmonic Analysis, 2015. [doi:10.1016/j.acha.2015.08.013](http://dx.doi.org/10.1016/j.acha.2015.08.013).

Outline of the talk

1 [Introduction to hybrid imaging inverse problems](#page-2-0)

[Disjoint sparsity for signal separation](#page-11-0)

³ [Applications to quantitative photoacoustic tomography](#page-53-0)

Photoacoustic tomography

(From Wikipedia, http://en.wikipedia.org/wiki/Photoacoustic_imaging_in_biomedicine)

- 1. The image is $H(x) = \Gamma(x)\mu(x)u(x)$, where
	- \blacktriangleright μ is the light absorption,
	- \blacktriangleright Γ is the Grüneisen parameter,
	- \blacktriangleright and u is the light intensity.
- 2. How to extract the unknowns from H?

Photoacoustic tomography

(From Wikipedia, http://en.wikipedia.org/wiki/Photoacoustic_imaging_in_biomedicine)

- 1. The image is $H(x) = \Gamma(x)\mu(x)u(x)$, where
	- \blacktriangleright μ is the light absorption,
	- \blacktriangleright Γ is the Grüneisen parameter,
	- and u is the light intensity.

2. How to extract the unknowns from H ?

Photoacoustic tomography

(From Wikipedia, http://en.wikipedia.org/wiki/Photoacoustic_imaging_in_biomedicine)

- 1. The image is $H(x) = \Gamma(x)\mu(x)u(x)$, where
	- \blacktriangleright μ is the light absorption,
	- \blacktriangleright Γ is the Grüneisen parameter,
	- and u is the light intensity.
- 2. How to extract the unknowns from H?

- **I Alessandrini, Arridge, Bal, Beard, Beretta, Cox, Di Cristo, Francini, Gao, Jollivet, Jugnon, Kaipio** Köstli, Laufer, Muszkieta, Naetar, Pulkkinen, Ren, Scherzer, Tarvainen, Uhlmann, Vessella, Zhao, ...
- A possible way to obtain Γ and μ from

$H = \Gamma \mu u$

is based on the PDE satisfied by u . In the diffusive regime for light $-\text{div}(D\nabla u) + \mu u = 0$ in Ω .

 \triangleright This approach is sometimes very successful. Possible drawbacks:

- \triangleright PDE model non accurate (e.g. transport regime for light), or required boundary conditions not known.
- \triangleright Too many unknowns (e.g. if $\Gamma \neq 1$ above)

The focus of this talk is a new approach to this issue based on the separation of the unknowns from the fields via sparsity conditions:

$$
h = \log H = \log \Gamma \mu + \log u = f + g.
$$

- \blacktriangleright Following [Rosenthal, Razansky, Ntziachristos, 2009], observe that:
	- In the light absorption μ is a constitutive parameter of the tissue, and as such is discontinuous. Its discontinuities are typically the inclusions we are looking for;
	- \blacktriangleright the light intensity u tends to be much smoother.

- **I Alessandrini, Arridge, Bal, Beard, Beretta, Cox, Di Cristo, Francini, Gao, Jollivet, Jugnon, Kaipio** Köstli, Laufer, Muszkieta, Naetar, Pulkkinen, Ren, Scherzer, Tarvainen, Uhlmann, Vessella, Zhao, ...
- A possible way to obtain Γ and μ from

$H = \Gamma \mu u$

is based on the PDE satisfied by u . In the diffusive regime for light $-\text{div}(D\nabla u) + \mu u = 0$ in Ω .

- \triangleright This approach is sometimes very successful. Possible drawbacks:
	- \triangleright PDE model non accurate (e.g. transport regime for light), or required boundary conditions not known.
	- \triangleright Too many unknowns (e.g. if $\Gamma \neq 1$ above)

The focus of this talk is a new approach to this issue based on the separation of the unknowns from the fields via sparsity conditions:

- \blacktriangleright Following [Rosenthal, Razansky, Ntziachristos, 2009], observe that:
	- In the light absorption μ is a constitutive parameter of the tissue, and as such is discontinuous. Its discontinuities are typically the inclusions we are looking for;
	- \blacktriangleright the light intensity u tends to be much smoother.

- **I Alessandrini, Arridge, Bal, Beard, Beretta, Cox, Di Cristo, Francini, Gao, Jollivet, Jugnon, Kaipio** Köstli, Laufer, Muszkieta, Naetar, Pulkkinen, Ren, Scherzer, Tarvainen, Uhlmann, Vessella, Zhao, ...
- A possible way to obtain Γ and μ from

$H = \Gamma \mu u$

is based on the PDE satisfied by u . In the diffusive regime for light $-\text{div}(D\nabla u) + \mu u = 0$ in Ω .

- \triangleright This approach is sometimes very successful. Possible drawbacks:
	- \triangleright PDE model non accurate (e.g. transport regime for light), or required boundary conditions not known.
	- ► Too many unknowns (e.g. if $\Gamma \neq 1$ above)

The focus of this talk is a new approach to this issue based on the separation of the unknowns from the fields via sparsity conditions:

- \blacktriangleright Following [Rosenthal, Razansky, Ntziachristos, 2009], observe that:
	- In the light absorption μ is a constitutive parameter of the tissue, and as such is discontinuous. Its discontinuities are typically the inclusions we are looking for;
	- \blacktriangleright the light intensity u tends to be much smoother.

- **I Alessandrini, Arridge, Bal, Beard, Beretta, Cox, Di Cristo, Francini, Gao, Jollivet, Jugnon, Kaipio** Köstli, Laufer, Muszkieta, Naetar, Pulkkinen, Ren, Scherzer, Tarvainen, Uhlmann, Vessella, Zhao, ...
- A possible way to obtain Γ and μ from

$H = \Gamma \mu u$

is based on the PDE satisfied by u . In the diffusive regime for light $-\text{div}(D\nabla u) + \mu u = 0$ in Ω .

- \triangleright This approach is sometimes very successful. Possible drawbacks:
	- \triangleright PDE model non accurate (e.g. transport regime for light), or required boundary conditions not known.
	- ► Too many unknowns (e.g. if $\Gamma \neq 1$ above)

The focus of this talk is a new approach to this issue based on the separation of the unknowns from the fields via sparsity conditions:

 $h = \log H = \log \Gamma \mu + \log u = f + q.$

- \blacktriangleright Following [Rosenthal, Razansky, Ntziachristos, 2009], observe that:
	- In the light absorption μ is a constitutive parameter of the tissue, and as such is discontinuous. Its discontinuities are typically the inclusions we are looking for;
	- \blacktriangleright the light intensity u tends to be much smoother.

- **I Alessandrini, Arridge, Bal, Beard, Beretta, Cox, Di Cristo, Francini, Gao, Jollivet, Jugnon, Kaipio** Köstli, Laufer, Muszkieta, Naetar, Pulkkinen, Ren, Scherzer, Tarvainen, Uhlmann, Vessella, Zhao, ...
- A possible way to obtain Γ and μ from

$H = \Gamma u u$

is based on the PDE satisfied by u . In the diffusive regime for light $-\text{div}(D\nabla u) + \mu u = 0$ in Ω .

- \triangleright This approach is sometimes very successful. Possible drawbacks:
	- \triangleright PDE model non accurate (e.g. transport regime for light), or required boundary conditions not known.
	- ► Too many unknowns (e.g. if $\Gamma \neq 1$ above)

The focus of this talk is a new approach to this issue based on the separation of the unknowns from the fields via sparsity conditions:

 $h = \log H = \log \Gamma \mu + \log u = f + a.$

- \blacktriangleright Following [Rosenthal, Razansky, Ntziachristos, 2009], observe that:
	- In the light absorption μ is a constitutive parameter of the tissue, and as such is discontinuous. Its discontinuities are typically the inclusions we are looking for;
	- In the light intensity u tends to be much smoother.

Outline of the talk

¹ [Introduction to hybrid imaging inverse problems](#page-2-0)

² [Disjoint sparsity for signal separation](#page-11-0)

³ [Applications to quantitative photoacoustic tomography](#page-53-0)

- ► Let $h \in \mathbb{R}^n$ be a column vector $(n = d \times d$ is the resolution of the image).
- Exect $A \in \mathbb{R}^{n \times m}$ be a dictionary of m atoms, which are used as building blocks: (1) $h = Ay$,

for some coefficient vector $y \in \mathbb{R}^m$ (weights).

- If $m > n$ then [\(1\)](#page-12-0) is in general underdetermined, and has many solutions y.
- \triangleright Select the *sparsest* one, i.e. with fewest non-zero entries:

$$
\min_{y \in \mathbb{R}^m} \|y\|_0 \quad \text{ subject to } h = Ay,
$$

where $||y||_0 := \#\mathrm{supp}\, y = \#\{\alpha \in \{1, ..., m\} : y(\alpha) \neq 0\}.$

- If the dictionary A is well chosen, it is possible to represent an n-dimensional vector with much fewer coefficients.
- \blacktriangleright In practice, we minimise

$$
\min_{y \in \mathbb{R}^m} \|y\|_0 \quad \text{ subject to } \|h - Ay\|_2 \le \varepsilon
$$

- ► Let $h \in \mathbb{R}^n$ be a column vector $(n = d \times d$ is the resolution of the image).
- ► Let $A \in \mathbb{R}^{n \times m}$ be a dictionary of m atoms, which are used as building blocks:

$$
(1) \t\t\t h = Ay,
$$

for some coefficient vector $y \in \mathbb{R}^m$ (weights).

- If $m > n$ then [\(1\)](#page-12-0) is in general underdetermined, and has many solutions y.
- \triangleright Select the *sparsest* one, i.e. with fewest non-zero entries:

$$
\min_{y \in \mathbb{R}^m} \|y\|_0 \quad \text{ subject to } h = Ay,
$$

where $||y||_0 := \#\mathrm{supp}\, y = \#\{\alpha \in \{1, ..., m\} : y(\alpha) \neq 0\}.$

- If the dictionary A is well chosen, it is possible to represent an n-dimensional vector with much fewer coefficients.
- \blacktriangleright In practice, we minimise

$$
\min_{y \in \mathbb{R}^m} \|y\|_0 \quad \text{ subject to } \|h - Ay\|_2 \le \varepsilon
$$

- ► Let $h \in \mathbb{R}^n$ be a column vector $(n = d \times d$ is the resolution of the image).
- ► Let $A \in \mathbb{R}^{n \times m}$ be a dictionary of m atoms, which are used as building blocks:

$$
(1) \t\t\t h = Ay,
$$

for some coefficient vector $y \in \mathbb{R}^m$ (weights).

- If $m > n$ then [\(1\)](#page-12-0) is in general underdetermined, and has many solutions y.
- \triangleright Select the *sparsest* one, i.e. with fewest non-zero entries:

$$
\min_{y\in\mathbb{R}^m} \|y\|_0 \quad \text{ subject to } h = Ay,
$$

where $||y||_0 := \#\mathrm{supp}\, y = \#\{\alpha \in \{1, ..., m\} : y(\alpha) \neq 0\}.$

- If the dictionary A is well chosen, it is possible to represent an n-dimensional vector with much fewer coefficients.
- \blacktriangleright In practice, we minimise

$$
\min_{y \in \mathbb{R}^m} \|y\|_0 \quad \text{ subject to } \|h - Ay\|_2 \le \varepsilon
$$

- ► Let $h \in \mathbb{R}^n$ be a column vector $(n = d \times d$ is the resolution of the image).
- ► Let $A \in \mathbb{R}^{n \times m}$ be a dictionary of m atoms, which are used as building blocks:

$$
(1) \t\t\t h = Ay,
$$

for some coefficient vector $y \in \mathbb{R}^m$ (weights).

- If $m > n$ then [\(1\)](#page-12-0) is in general underdetermined, and has many solutions y.
- \triangleright Select the *sparsest* one, i.e. with fewest non-zero entries:

$$
\min_{y \in \mathbb{R}^m} \|y\|_0 \quad \text{ subject to } h = Ay,
$$

where $||y||_0 := \#\text{supp } y = \#\{\alpha \in \{1, ..., m\} : y(\alpha) \neq 0\}.$

If the dictionary A is well chosen, it is possible to represent an n-dimensional vector with much fewer coefficients.

 \blacktriangleright In practice, we minimise

$$
\min_{y \in \mathbb{R}^m} \|y\|_0 \quad \text{subject to } \|h - Ay\|_2 \le \varepsilon
$$

- ► Let $h \in \mathbb{R}^n$ be a column vector $(n = d \times d$ is the resolution of the image).
- ► Let $A \in \mathbb{R}^{n \times m}$ be a dictionary of m atoms, which are used as building blocks:

$$
(1) \t\t\t h = Ay,
$$

for some coefficient vector $y \in \mathbb{R}^m$ (weights).

- If $m > n$ then [\(1\)](#page-12-0) is in general underdetermined, and has many solutions y.
- \triangleright Select the *sparsest* one, i.e. with fewest non-zero entries:

$$
\min_{y \in \mathbb{R}^m} \|y\|_0 \quad \text{ subject to } h = Ay,
$$

where $||y||_0 := \#\text{supp } y = \#\{\alpha \in \{1, ..., m\} : y(\alpha) \neq 0\}.$

If the dictionary A is well chosen, it is possible to represent an n -dimensional vector with much fewer coefficients.

 \blacktriangleright In practice, we minimise

$$
\min_{y \in \mathbb{R}^m} \|y\|_0 \quad \text{subject to } \|h - Ay\|_2 \le \varepsilon
$$

- ► Let $h \in \mathbb{R}^n$ be a column vector $(n = d \times d$ is the resolution of the image).
- ► Let $A \in \mathbb{R}^{n \times m}$ be a dictionary of m atoms, which are used as building blocks:

$$
(1) \t\t\t h = Ay,
$$

for some coefficient vector $y \in \mathbb{R}^m$ (weights).

- If $m > n$ then [\(1\)](#page-12-0) is in general underdetermined, and has many solutions y.
- \triangleright Select the *sparsest* one, i.e. with fewest non-zero entries:

$$
\min_{y \in \mathbb{R}^m} \|y\|_0 \quad \text{ subject to } h = Ay,
$$

where $||y||_0 := \#\text{supp } y = \#\{\alpha \in \{1, ..., m\} : y(\alpha) \neq 0\}.$

- If the dictionary A is well chosen, it is possible to represent an n-dimensional vector with much fewer coefficients.
- \blacktriangleright In practice, we minimise

$$
\min_{y \in \mathbb{R}^m} \|y\|_0 \quad \text{subject to } \|h - Ay\|_2 \le \varepsilon
$$

- ► Let $h \in \mathbb{R}^n$ be a column vector $(n = d \times d$ is the resolution of the image).
- ► Let $A \in \mathbb{R}^{n \times m}$ be a dictionary of m atoms, which are used as building blocks:

$$
(1) \t\t\t h = Ay,
$$

for some coefficient vector $y \in \mathbb{R}^m$ (weights).

- If $m > n$ then [\(1\)](#page-12-0) is in general underdetermined, and has many solutions y.
- \triangleright Select the *sparsest* one, i.e. with fewest non-zero entries:

$$
\min_{y \in \mathbb{R}^m} \|y\|_0 \quad \text{subject to } h = Ay,
$$

where $||y||_0 := \#\text{supp } y = \#\{\alpha \in \{1, ..., m\} : y(\alpha) \neq 0\}.$

- If the dictionary A is well chosen, it is possible to represent an n -dimensional vector with much fewer coefficients.
- \blacktriangleright In practice, we minimise

$$
\min_{y \in \mathbb{R}^m} \|y\|_0 \quad \text{subject to } \|h - Ay\|_2 \le \varepsilon
$$

Back to the signal separation problem.

In Let $h = f + g \in \mathbb{R}^n$ be the sum of two components.

- ► Let $A_f \in \mathbb{R}^{n \times m_f}$ and $A_g \in \mathbb{R}^{n \times m_g}$ be two dictionaries such that:
	- \triangleright f can be sparsely represented w.r.t. A_f but not w.r.t. A_g ;
	- \blacktriangleright g can be sparsely represented w.r.t. A_{g} but not w.r.t. A_{f} ;

Decompose h w.r.t. the concatenated dictionary $A = [A_f, A_g]$:

$$
\min_{y \in \mathbb{R}^{m_f + m_g}} \|y\|_0 \quad \text{subject to } [A_f, A_g] \left[\begin{smallmatrix} y_f \\ y_g \end{smallmatrix}\right] = h.
$$

Recover $f \approx A_f y_f$, $g \approx A_g y_g$.

Back to the signal separation problem.

► Let $h = f + g \in \mathbb{R}^n$ be the sum of two components.

- ► Let $A_f \in \mathbb{R}^{n \times m_f}$ and $A_g \in \mathbb{R}^{n \times m_g}$ be two dictionaries such that:
	- \triangleright f can be sparsely represented w.r.t. A_f but not w.r.t. A_g ;
	- \blacktriangleright g can be sparsely represented w.r.t. A_{g} but not w.r.t. A_{f} ;

Decompose h w.r.t. the concatenated dictionary $A = [A_f, A_g]$:

$$
\min_{y \in \mathbb{R}^{m_f + m_g}} \|y\|_0 \quad \text{subject to } [A_f, A_g] \left[\begin{smallmatrix} y_f \\ y_g \end{smallmatrix}\right] = h.
$$

Recover $f \approx A_f y_f$, $q \approx A_q y_q$.

Back to the signal separation problem.

- ► Let $h = f + g \in \mathbb{R}^n$ be the sum of two components.
- ► Let $A_f \in \mathbb{R}^{n \times m_f}$ and $A_g \in \mathbb{R}^{n \times m_g}$ be two dictionaries such that:
	- If can be sparsely represented w.r.t. A_f but not w.r.t. A_g ;
	- \blacktriangleright g can be sparsely represented w.r.t. A_{q} but not w.r.t. A_{f} ;

 \triangleright Decompose h w.r.t. the concatenated dictionary $A = [A_f, A_g]$:

$$
\min_{y\in\mathbb{R}^{m_f+m_g}}\|y\|_0\quad\text{subject to}\; [A_f,A_g]\left[\begin{smallmatrix}y_f\\y_g\end{smallmatrix}\right]=h.
$$

Recover $f \approx A_f y_f$, $q \approx A_q y_q$.

Back to the signal separation problem.

- ► Let $h = f + g \in \mathbb{R}^n$ be the sum of two components.
- ► Let $A_f \in \mathbb{R}^{n \times m_f}$ and $A_g \in \mathbb{R}^{n \times m_g}$ be two dictionaries such that:
	- If can be sparsely represented w.r.t. A_f but not w.r.t. A_g ;
	- \blacktriangleright g can be sparsely represented w.r.t. A_{q} but not w.r.t. A_{f} ;

 \blacktriangleright Decompose h w.r.t. the concatenated dictionary $A = [A_f, A_g]$:

$$
\min_{y \in \mathbb{R}^{m_f+m_g}} \|y\|_0 \quad \text{subject to } [A_f, A_g] \left[\begin{smallmatrix} y_f \\ y_g \end{smallmatrix}\right] = h.
$$

Recover $f \approx A_f y_f$, $q \approx A_q y_q$.

Back to the signal separation problem.

- ► Let $h = f + g \in \mathbb{R}^n$ be the sum of two components.
- ► Let $A_f \in \mathbb{R}^{n \times m_f}$ and $A_g \in \mathbb{R}^{n \times m_g}$ be two dictionaries such that:
	- If can be sparsely represented w.r.t. A_f but not w.r.t. A_g ;
	- \blacktriangleright g can be sparsely represented w.r.t. A_{q} but not w.r.t. A_{f} ;

 \blacktriangleright Decompose h w.r.t. the concatenated dictionary $A = [A_f, A_g]$:

$$
\min_{y \in \mathbb{R}^{m_f+m_g}} \|y\|_0 \quad \text{subject to } [A_f, A_g] \left[\begin{smallmatrix} y_f \\ y_g \end{smallmatrix}\right] = h.
$$

Recover $f \approx A_f y_f$, $g \approx A_g y_g$.

Back to the signal separation problem.

- ► Let $h = f + g \in \mathbb{R}^n$ be the sum of two components.
- ► Let $A_f \in \mathbb{R}^{n \times m_f}$ and $A_g \in \mathbb{R}^{n \times m_g}$ be two dictionaries such that:
	- If can be sparsely represented w.r.t. A_f but not w.r.t. A_g ;
	- \blacktriangleright g can be sparsely represented w.r.t. A_{q} but not w.r.t. A_{f} ;

 \blacktriangleright Decompose h w.r.t. the concatenated dictionary $A = [A_f, A_g]$:

$$
\min_{y \in \mathbb{R}^{m_f + m_g}} \|y\|_0 \quad \text{subject to } [A_f, A_g] \left[\begin{smallmatrix} y_f \\ y_g \end{smallmatrix}\right] = h.
$$

$$
\blacktriangleright \text{ Recovery } f \approx A_f y_f, \ g \approx A_g y_g.
$$

Example: spikes and sinusoids (Donoho, Huo, 2001,...)

Choose $A_f = A_\delta$ and $A_g = A_F$ and let $y = \left[\begin{smallmatrix} y_f \ y_g \end{smallmatrix} \right]$ give the sparsest representation of h w.r.t. $A = [A_f, A_g]$. This clearly provides the right reconstruction: only 4 atoms are used.

Example: spikes and sinusoids (Donoho, Huo, 2001,...)

Choose $A_f=A_\delta$ and $A_g=A_F$ and let $y=\left[\begin{smallmatrix} y_f \ y_g \end{smallmatrix}\right]$ give the sparsest representation of h w.r.t. $A=[A_f,A_g].$ This clearly provides the right reconstruction: only 4 atoms are used.

Why does writing $f = A_f y_f$ and $g = A_q y_q$ give the correct reconstruction?

Intertative principle) If $h \neq 0$ has the representations $h = A u_A = B u_B$ w. r. t. two orthonormal bases $A = [a_1, \ldots, a_n]$ and $B = [b_1, \ldots, b_n]$, then

 $||y_A||_0 + ||y_B||_0 \geq 2/M,$

where $M = \max_{i,j} |(a_i,b_j)_2|$ is the *mutual coherence*. $(M = 1/\sqrt{n}$ with spikes and sinusoids.)

- If f and g have representations y_f and y_g satisfying $||y_f||_{0} + ||y_g||_{0} < 1/M$, then the reconstruction is correct.
- In practice, the assumption $||y_f||_0 + ||y_g||_0 < 1/M$ is almost never satisfied, and so the above argument remains only a theoretical speculation.

Why does writing $f = A_f y_f$ and $g = A_g y_g$ give the correct reconstruction?

Intertainty principle) If $h \neq 0$ has the representations $h = Ay_A = By_B$ w. r. t. two orthonormal bases $A = [a_1, \ldots, a_n]$ and $B = [b_1, \ldots, b_n]$, then

$$
||y_A||_0 + ||y_B||_0 \ge 2/M,
$$

where $M = \max_{i,j} |(a_i,b_j)_2|$ is the *mutual coherence*. $(M = 1/\sqrt{n}$ with spikes and sinusoids.)

- If f and g have representations y_f and y_g satisfying $||y_f||_{0} + ||y_g||_{0} < 1/M$, then the reconstruction is correct.
- In practice, the assumption $||y_f||_0 + ||y_g||_0 < 1/M$ is almost never satisfied, and so the above argument remains only a theoretical speculation.

Why does writing $f = A_f y_f$ and $g = A_q y_q$ give the correct reconstruction?

Intertainty principle) If $h \neq 0$ has the representations $h = Ay_A = By_B$ w. r. t. two orthonormal bases $A = [a_1, \ldots, a_n]$ and $B = [b_1, \ldots, b_n]$, then

$$
||y_A||_0 + ||y_B||_0 \ge 2/M,
$$

where $M = \max_{i,j} |(a_i,b_j)_2|$ is the *mutual coherence*. $(M = 1/\sqrt{n}$ with spikes and sinusoids.)

- If f and g have representations y_f and y_g satisfying $||y_f||_0 + ||y_g||_0 < 1/M$, then the reconstruction is correct.
- In practice, the assumption $||y_f||_0 + ||y_g||_0 < 1/M$ is almost never satisfied, and so the above argument remains only a theoretical speculation.

Why does writing $f = A_f y_f$ and $g = A_q y_q$ give the correct reconstruction?

Intertainty principle) If $h \neq 0$ has the representations $h = Ay_A = By_B$ w. r. t. two orthonormal bases $A = [a_1, \ldots, a_n]$ and $B = [b_1, \ldots, b_n]$, then

$$
||y_A||_0 + ||y_B||_0 \ge 2/M,
$$

where $M = \max_{i,j} |(a_i,b_j)_2|$ is the *mutual coherence*. $(M = 1/\sqrt{n}$ with spikes and sinusoids.)

- If f and g have representations y_f and y_g satisfying $||y_f||_0 + ||y_g||_0 < 1/M$, then the reconstruction is correct.
- In practice, the assumption $||y_f||_0 + ||y_g||_0 < 1/M$ is almost never satisfied, and so the above argument remains only a theoretical speculation.

Why does writing $f = A_f y_f$ and $g = A_q y_q$ give the correct reconstruction?

Intertainty principle) If $h \neq 0$ has the representations $h = Ay_A = By_B$ w. r. t. two orthonormal bases $A = [a_1, \ldots, a_n]$ and $B = [b_1, \ldots, b_n]$, then

$$
||y_A||_0 + ||y_B||_0 \ge 2/M,
$$

where $M = \max_{i,j} |(a_i,b_j)_2|$ is the *mutual coherence*. $(M = 1/\sqrt{n}$ with spikes and sinusoids.)

- If f and g have representations y_f and y_g satisfying $||y_f||_0 + ||y_g||_0 < 1/M$, then the reconstruction is correct.
- In practice, the assumption $||y_f||_0 + ||y_g||_0 < 1/M$ is almost never satisfied, and so the above argument remains only a theoretical speculation.

\blacktriangleright Let

$h_i = f + g_i \in \mathbb{R}^n, \qquad i = 1, ..., N$

be N measurements. The problem is to recover f and the g_i 's.

- ► Let $A_f \in \mathbb{R}^{n \times m_f}$ and $A_g \in \mathbb{R}^{n \times m_g}$ be two dictionaries as before. Assume that A_a is an orthonormal set (and that A_f is an orthonormal basis). In our applications:
	- A_f = Haar wavelets,
	- $A_q =$ low frequency sinusoids.
- \triangleright The reconstruction method applied here consists in the minimisation of

$$
\min_{y \in \mathbb{R}^{m_f + N m_g}} \|y\|_0 \quad \text{subject to } \left\| \begin{bmatrix} A_f, A_g \end{bmatrix} \begin{bmatrix} y_f \\ y_g^i \end{bmatrix} - h_i \right\|_2 \leq \varepsilon, \ i = 1, \dots, N,
$$

where $y=\,{}^t [{}^t y_f, \,{}^t y_g^1, \ldots, \,{}^t y_g^N].$

- \blacktriangleright The noisy case: $h_i = f + g_i + n_i$, $||n_i||_2 \leq \eta$ for some $\eta > 0$.
- \triangleright Why does this provide a better reconstruction?

 \blacktriangleright Let

$$
h_i = f + g_i \in \mathbb{R}^n, \qquad i = 1, \dots, N
$$

be N measurements. The problem is to recover f and the g_i 's.

- ► Let $A_f \in \mathbb{R}^{n \times m_f}$ and $A_g \in \mathbb{R}^{n \times m_g}$ be two dictionaries as before. Assume that A_q is an orthonormal set (and that A_f is an orthonormal basis). In our applications:
	- A_f = Haar wavelets,
	- $A_g =$ low frequency sinusoids.

 \triangleright The reconstruction method applied here consists in the minimisation of

 $\min_{y\in \mathbb{R}^{m_f+Nm_g}}\left\|y\right\|_0\quad \text{subject to }\left\|\left[A_f,A_g\right]\left[v_g^{i}\right]\right\|_2$ $\begin{aligned} \begin{bmatrix} y_f \\ y_g^i \end{bmatrix} - h_i \Big\|_2 \leq \varepsilon, \ i = 1, \ldots, N, \end{aligned}$

where $y=\,{}^t [{}^t y_f, \,{}^t y_g^1, \ldots, \,{}^t y_g^N].$

 \blacktriangleright The noisy case: $h_i = f + g_i + n_i$, $||n_i||_2 \leq \eta$ for some $\eta > 0$.

 \triangleright Why does this provide a better reconstruction?

 \blacktriangleright Let

$$
h_i = f + g_i \in \mathbb{R}^n, \qquad i = 1, \dots, N
$$

be N measurements. The problem is to recover f and the g_i 's.

- ► Let $A_f \in \mathbb{R}^{n \times m_f}$ and $A_g \in \mathbb{R}^{n \times m_g}$ be two dictionaries as before. Assume that A_q is an orthonormal set (and that A_f is an orthonormal basis). In our applications:
	- A_f = Haar wavelets,
	- $A_g =$ low frequency sinusoids.
- \triangleright The reconstruction method applied here consists in the minimisation of

 $\min_{y\in \mathbb{R}^{m_f+Nm_g}}\left\|y\right\|_0\quad \text{subject to }\left\|\left[A_fA_g\right]\left[v_g^{i}\right]\right\|_2$ $\begin{aligned} \begin{vmatrix} y_f \\ y_g^i \end{vmatrix} - h_i \Big\|_2 \leq \varepsilon, \ i = 1, \ldots, N, \end{aligned}$

where
$$
y = \,^t [{}^t y_f, \,^t y_g^1, \ldots, \,^t y_g^N].
$$

 \blacktriangleright The noisy case: $h_i = f + g_i + n_i$, $||n_i||_2 \leq \eta$ for some $\eta > 0$.

 \triangleright Why does this provide a better reconstruction?

 \blacktriangleright Let

$$
h_i = f + g_i \in \mathbb{R}^n, \qquad i = 1, \dots, N
$$

be N measurements. The problem is to recover f and the g_i 's.

- ► Let $A_f \in \mathbb{R}^{n \times m_f}$ and $A_g \in \mathbb{R}^{n \times m_g}$ be two dictionaries as before. Assume that A_a is an orthonormal set (and that A_f is an orthonormal basis). In our applications:
	- A_f = Haar wavelets,
	- $A_g =$ low frequency sinusoids.
- \triangleright The reconstruction method applied here consists in the minimisation of

 $\min_{y\in \mathbb{R}^{m_f+Nm_g}}\left\|y\right\|_0\quad \text{subject to }\left\|\left[A_fA_g\right]\left[v_g^{i}\right]\right\|_2$ $\begin{aligned} \begin{vmatrix} y_f \\ y_g^i \end{vmatrix} - h_i \Big\|_2 \leq \varepsilon, \ i = 1, \ldots, N, \end{aligned}$

where $y = {}^{t}[{}^{t}y_{f}, {}^{t}y_{g}^{1}, \ldots, {}^{t}y_{g}^{N}].$

 \blacktriangleright The noisy case: $h_i = f + g_i + n_i$, $||n_i||_2 \leq \eta$ for some $\eta > 0$.

 \triangleright Why does this provide a better reconstruction?
Multi-measurement case

 \blacktriangleright Let

$$
h_i = f + g_i \in \mathbb{R}^n, \qquad i = 1, \dots, N
$$

be N measurements. The problem is to recover f and the g_i 's.

- ► Let $A_f \in \mathbb{R}^{n \times m_f}$ and $A_g \in \mathbb{R}^{n \times m_g}$ be two dictionaries as before. Assume that A_{q} is an orthonormal set (and that A_{f} is an orthonormal basis). In our applications:
	- A_f = Haar wavelets,
	- $A_q =$ low frequency sinusoids.
- \triangleright The reconstruction method applied here consists in the minimisation of

$$
\min_{y \in \mathbb{R}^{m_f + N_{m_g}}} \|y\|_0 \quad \text{subject to } \left\| \begin{bmatrix} A_f, A_g \end{bmatrix} \begin{bmatrix} y_f \\ y_g^i \end{bmatrix} - h_i \right\|_2 \leq \varepsilon, \ i = 1, \dots, N,
$$

where $y = {}^{t}[{}^{t}y_{f}, {}^{t}y_{g}^{1}, \ldots, {}^{t}y_{g}^{N}].$

- \blacktriangleright The noisy case: $h_i = f + g_i + n_i$, $||n_i||_2 \leq \eta$ for some $\eta > 0$.
- \triangleright Why does this provide a better reconstruction?

 \blacktriangleright In the applications we have in mind, we shall have (indirect) control on the g_i 's.

We need enough incoherent data: this is measured by their disjoint sparsity.

 \blacktriangleright Write for some $\rho_f, \rho_g > 0$:

$$
\left\|f - A_f\tilde{y}_f\right\|_2 \leq \rho_f \quad \text{and} \quad \left\|g_i - A_g\tilde{y}_g^i\right\|_2 \leq \rho_g.
$$

Take β , $D > 0$. Assume that: $1.$ if $|\tilde{y}^i_g(\alpha) - \tilde{y}^j_g(\alpha)| \leq \beta$ and $\tilde{y}^i_g(\alpha) \tilde{y}^j_g(\alpha) \neq 0$ for some α then $i = j;$ 2. for every $p \in \mathbb{R}^n$ such that $||p||_2 > D$ and $||d^2p||_2 \leq 2/3$ there holds $\#\bigl(\mathrm{supp}~^t\!A_f p\!\setminus\!\mathrm{supp}~\!\tilde{y}_f\bigr) + \sum^N \#\left(\{\alpha: |({}^t\!A_g p)(\alpha)| \geq 1\}\setminus\mathrm{supp}~\!\tilde{y}_g^i\right) \,>\, \#\bigcup^N \mathrm{supp}~\!\tilde{y}_g^i + \bigl\|\tilde{y}_f\bigr\|_0.$ $i=1$

- \blacktriangleright 1 is mainly a technical assumption.
- \triangleright 2 is at the core of the approach: multiple and disjointly sparse measurements \tilde{y}^i_g make it easy to be satisfied.

- \blacktriangleright In the applications we have in mind, we shall have (indirect) control on the g_i 's.
- We need enough incoherent data: this is measured by their disjoint sparsity.
- \blacktriangleright Write for some $\rho_f, \rho_g > 0$:

$$
\left\|f - A_f \tilde{y}_f\right\|_2 \leq \rho_f \quad \text{and} \quad \left\|g_i - A_g \tilde{y}_g^i\right\|_2 \leq \rho_g.
$$

Take $\beta, D > 0$. Assume that: $1.$ if $|\tilde{y}^i_g(\alpha) - \tilde{y}^j_g(\alpha)| \leq \beta$ and $\tilde{y}^i_g(\alpha) \tilde{y}^j_g(\alpha) \neq 0$ for some α then $i = j;$ 2. for every $p \in \mathbb{R}^n$ such that $||p||_2 > D$ and $||d^2p||_2 \leq 2/3$ there holds $\#\bigl(\mathrm{supp}~^t\!A_f p\!\setminus\!\mathrm{supp}~\!\tilde{y}_f\bigr) + \sum^N \#\left(\{\alpha: |({}^t\!A_g p)(\alpha)| \geq 1\}\setminus\mathrm{supp}~\!\tilde{y}_g^i\right) \,>\, \#\bigcup^N \mathrm{supp}~\!\tilde{y}_g^i + \bigl\|\tilde{y}_f\bigr\|_0.$ $i=1$

- \blacktriangleright 1 is mainly a technical assumption.
- \triangleright 2 is at the core of the approach: multiple and disjointly sparse measurements \tilde{y}^i_g make it easy to be satisfied.

- \blacktriangleright In the applications we have in mind, we shall have (indirect) control on the g_i 's.
- \triangleright We need enough incoherent data: this is measured by their disjoint sparsity.
- \triangleright Write for some $\rho_f, \rho_g > 0$:

$$
\left\|f - A_f\tilde{y}_f\right\|_2 \leq \rho_f \quad \text{and} \quad \left\|g_i - A_g\tilde{y}_g^i\right\|_2 \leq \rho_g.
$$

Take
$$
\beta, D > 0
$$
. Assume that:
\n1. if $|\tilde{y}_g^i(\alpha) - \tilde{y}_g^j(\alpha)| \leq \beta$ and $\tilde{y}_g^i(\alpha)\tilde{y}_g^j(\alpha) \neq 0$ for some α then $i = j$;
\n2. for every $p \in \mathbb{R}^n$ such that $||p||_2 > D$ and $||^t A_g^{\perp} p||_2 \leq 2/3$ there holds
\n $\#(\mathrm{supp}^t A_f p \setminus \mathrm{supp} \tilde{y}_f) + \sum_{i=1}^N \#(\{\alpha : |(^t A_g p)(\alpha)| \geq 1\} \setminus \mathrm{supp} \tilde{y}_g^i) > \# \bigcup_{i=1}^N \mathrm{supp} \tilde{y}_g^i + ||\tilde{y}_f||_0.$

- \blacktriangleright 1 is mainly a technical assumption.
- \triangleright 2 is at the core of the approach: multiple and disjointly sparse measurements \tilde{y}^i_g make it easy to be satisfied.

- \blacktriangleright In the applications we have in mind, we shall have (indirect) control on the g_i 's.
- \triangleright We need enough incoherent data: this is measured by their disjoint sparsity.
- ► Write for some $\rho_f, \rho_g > 0$:

$$
\left\|f - A_f\tilde{y}_f\right\|_2 \leq \rho_f \quad \text{and} \quad \left\|g_i - A_g\tilde{y}_g^i\right\|_2 \leq \rho_g.
$$

Take $\beta, D > 0$. Assume that: $1.$ if $|\tilde{y}^i_g(\alpha)-\tilde{y}^j_g(\alpha)|\leq \beta$ and $\tilde{y}^i_g(\alpha)\tilde{y}^j_g(\alpha)\neq 0$ for some α then $i=j;$ 2. for every $p \in \mathbb{R}^n$ such that $||p||_2 > D$ and $||{}^t A_g^{\perp} p||_2 \leq 2/3$ there holds $\#\bigl(\mathrm{supp}~^t\!A_f p\!\setminus\!\mathrm{supp}~\tilde{y}_f\bigr) + \sum^N \#\left(\{\alpha: |({}^t\!A_g p)(\alpha)| \geq 1\}\setminus\mathrm{supp}~\tilde{y}^i_g\right) \,>\, \#\bigcup^N \mathrm{supp}~\tilde{y}^i_g + \|\tilde{y}_f\|_0.$

- \blacktriangleright 1 is mainly a technical assumption.
- \triangleright 2 is at the core of the approach: multiple and disjointly sparse measurements \tilde{y}^i_g make it easy to be satisfied.

- \blacktriangleright In the applications we have in mind, we shall have (indirect) control on the g_i 's.
- \triangleright We need enough incoherent data: this is measured by their disjoint sparsity.
- \triangleright Write for some $\rho_f, \rho_g > 0$:

$$
\left\|f - A_f\tilde{y}_f\right\|_2 \leq \rho_f \quad \text{and} \quad \left\|g_i - A_g\tilde{y}_g^i\right\|_2 \leq \rho_g.
$$

Take
$$
\beta, D > 0
$$
. Assume that:
\n1. if $|\tilde{y}_g^i(\alpha) - \tilde{y}_g^j(\alpha)| \leq \beta$ and $\tilde{y}_g^i(\alpha)\tilde{y}_g^j(\alpha) \neq 0$ for some α then $i = j$;
\n2. for every $p \in \mathbb{R}^n$ such that $||p||_2 > D$ and $||{}^t A_g^{\perp} p||_2 \leq 2/3$ there holds
\n $\#(\mathrm{supp}{}^t A_f p \setminus \mathrm{supp}{} \tilde{y}_f) + \sum_{i=1}^N \#(\{\alpha : |({}^t A_g p)(\alpha)| \geq 1\} \setminus \mathrm{supp}{} \tilde{y}_g^i) > \# \bigcup_{i=1}^N \mathrm{supp}{} \tilde{y}_g^i + ||\tilde{y}_f||_0.$

- \blacktriangleright 1 is mainly a technical assumption.
- \triangleright 2 is at the core of the approach: multiple and disjointly sparse measurements \tilde{y}^i_g make it easy to be satisfied.

- \blacktriangleright In the applications we have in mind, we shall have (indirect) control on the g_i 's.
- \triangleright We need enough incoherent data: this is measured by their disjoint sparsity.
- \triangleright Write for some $\rho_f, \rho_g > 0$:

$$
\left\|f - A_f\tilde{y}_f\right\|_2 \leq \rho_f \quad \text{and} \quad \left\|g_i - A_g\tilde{y}_g^i\right\|_2 \leq \rho_g.
$$

Take
$$
\beta, D > 0
$$
. Assume that:
\n1. if $|\tilde{y}_g^i(\alpha) - \tilde{y}_g^j(\alpha)| \leq \beta$ and $\tilde{y}_g^i(\alpha)\tilde{y}_g^j(\alpha) \neq 0$ for some α then $i = j$;
\n2. for every $p \in \mathbb{R}^n$ such that $||p||_2 > D$ and $||{}^t A_g^{\perp} p ||_2 \leq 2/3$ there holds
\n $\#(\mathrm{supp}{}^t A_f p \setminus \mathrm{supp} \tilde{y}_f) + \sum_{i=1}^N \#(\{\alpha : |({}^t A_g p)(\alpha)| \geq 1\} \setminus \mathrm{supp} \tilde{y}_g^i) > \# \bigcup_{i=1}^N \mathrm{supp} \tilde{y}_g^i + ||\tilde{y}_f||_0.$

1 is mainly a technical assumption.

 \triangleright 2 is at the core of the approach: multiple and disjointly sparse measurements \tilde{y}^i_g make it easy to be satisfied.

- \blacktriangleright In the applications we have in mind, we shall have (indirect) control on the g_i 's.
- \triangleright We need enough incoherent data: this is measured by their disjoint sparsity.
- \triangleright Write for some $\rho_f, \rho_g > 0$:

$$
\left\|f - A_f\tilde{y}_f\right\|_2 \leq \rho_f \quad \text{and} \quad \left\|g_i - A_g\tilde{y}_g^i\right\|_2 \leq \rho_g.
$$

Take
$$
\beta, D > 0
$$
. Assume that:
\n1. if $|\tilde{y}_g^i(\alpha) - \tilde{y}_g^j(\alpha)| \leq \beta$ and $\tilde{y}_g^i(\alpha)\tilde{y}_g^j(\alpha) \neq 0$ for some α then $i = j$;
\n2. for every $p \in \mathbb{R}^n$ such that $||p||_2 > D$ and $||{}^t A_g^{\perp} p||_2 \leq 2/3$ there holds
\n $\#(\mathrm{supp}{}^t A_f p \setminus \mathrm{supp}{} \tilde{y}_f) + \sum_{i=1}^N \#(\{\alpha : |({}^t A_g p)(\alpha)| \geq 1\} \setminus \mathrm{supp}{} \tilde{y}_g^i) > \# \bigcup_{i=1}^N \mathrm{supp}{} \tilde{y}_g^i + ||\tilde{y}_f||_0.$

- \blacktriangleright 1 is mainly a technical assumption.
- \triangleright 2 is at the core of the approach: multiple and disjointly sparse measurements \tilde{y}^i_g make it easy to be satisfied.

- \blacktriangleright In the applications we have in mind, we shall have (indirect) control on the g_i 's.
- \triangleright We need enough incoherent data: this is measured by their disjoint sparsity.
- \triangleright Write for some $\rho_f, \rho_g > 0$:

$$
\left\|f - A_f\tilde{y}_f\right\|_2 \leq \rho_f \quad \text{and} \quad \left\|g_i - A_g\tilde{y}_g^i\right\|_2 \leq \rho_g.
$$

Take
$$
\beta, D > 0
$$
. Assume that: \n1. if $|\tilde{y}_g^i(\alpha) - \tilde{y}_g^j(\alpha)| \leq \beta$ and $\tilde{y}_g^i(\alpha)\tilde{y}_g^j(\alpha) \neq 0$ for some α then $i = j$; \n2. for every $p \in \mathbb{R}^n$ such that $||p||_2 > D$ and $||^t A_g^{\perp} p||_2 \leq 2/3$ there holds \n $\#(\text{supp}^t A_f p \setminus \text{supp} \tilde{y}_f) + \sum_{i=1}^N \#(\{\alpha : |(^t A_g p)(\alpha)| \geq 1\} \setminus \text{supp} \tilde{y}_g^i) > \# \bigcup_{i=1}^N \text{supp} \tilde{y}_g^i + ||\tilde{y}_f||_0.$

- \blacktriangleright 1 is mainly a technical assumption.
- \triangleright 2 is at the core of the approach: multiple and disjointly sparse measurements \tilde{y}^i_g make it easy to be satisfied.

- \blacktriangleright In the applications we have in mind, we shall have (indirect) control on the g_i 's.
- \triangleright We need enough incoherent data: this is measured by their disjoint sparsity.
- \triangleright Write for some $\rho_f, \rho_g > 0$:

$$
\left\|f - A_f\tilde{y}_f\right\|_2 \leq \rho_f \quad \text{and} \quad \left\|g_i - A_g\tilde{y}_g^i\right\|_2 \leq \rho_g.
$$

Take
$$
\beta, D > 0
$$
. Assume that:
\n1. if $|\tilde{y}_g^i(\alpha) - \tilde{y}_g^j(\alpha)| \leq \beta$ and $\tilde{y}_g^i(\alpha)\tilde{y}_g^j(\alpha) \neq 0$ for some α then $i = j$;
\n2. for every $p \in \mathbb{R}^n$ such that $||p||_2 > D$ and $||{}^t A_g^{\perp} p ||_2 \leq 2/3$ there holds
\n $\#(\mathrm{supp}^t A_f p \setminus \mathrm{supp} \tilde{y}_f) + \sum_{i=1}^N \#(\{\alpha : |({}^t A_g p)(\alpha)| \geq 1\} \setminus \mathrm{supp} \tilde{y}_g^i) > m_g + ||\tilde{y}_f||_0.$

- \blacktriangleright 1 is mainly a technical assumption.
- \triangleright 2 is at the core of the approach: multiple and disjointly sparse measurements \tilde{y}^i_g make it easy to be satisfied.

2. ... for every $p \in \mathbb{R}^n$ such that $||p||_2 > D$ and $|| {}^t A_g^{\perp} p ||_2 \leq 2/3$ there holds $\#\left(\operatorname{supp} {^t\!A_f p \setminus \operatorname{supp} \tilde{y}_f}\right) + \sum^N \#\left(\{\alpha : |({^t\!A_g p)(\alpha)| \geq 1\}\setminus \operatorname{supp} \tilde{y}_g^i\right) > m_g + \left\|\tilde{y}_f\right\|_0.$ $i=1$

 \blacktriangleright "Classical". If M is the mutual coherence of A_f and A_g :

 $\left\| {}^{t}A_{f}p\right\|_{0} + \left\| {}^{t}A_{g}p\right\|_{0} \geq 2/M.$

► "Normalised". $\exists D > 0$ s.t. for all $p \in \mathbb{R}^n$ with $||p||_2 > D$ and $||^t A_g^{\perp} p||_2 \leq 2/3$ $||^{t}A_{f}p||_{0} + \#\{\alpha : |(^{t}A_{g}p)(\alpha)| \geq 1\} \geq 2/M.$

Unfortunately, $M \sim 1$ if A_f consists of wavelets and A_g of sinusoids...

 \blacktriangleright "Haar wavelets". Let A_f be the orthobasis of 2D Haar wavelets in $\mathbb{R}^{2^7 \times 2^7}$ and let A_{q} be 960 low frequency non-constant sinusoids. There exists $D > 0$ s.t.

$$
\left\| \,^t A_f p \right\|_0 \geq 1160,
$$

for every $p \in \mathbb{R}^n$ such that $||p||_2 > D$ and $||{}^t A_g^{\perp} p||_2 \leq 2/3$.

2. ... for every $p \in \mathbb{R}^n$ such that $||p||_2 > D$ and $|| {}^t A_g^{\perp} p ||_2 \leq 2/3$ there holds $\# \big(\mathrm{supp\,}{}^t\!A_f p \setminus \mathrm{supp\,} \tilde{y}_f \big) + \sum^N$ $i=1$ $\#\left(\{\alpha : |({}^t A_g p)(\alpha)| \geq 1\}\setminus \text{supp }\tilde{y}_g^i\right) > m_g + \|\tilde{y}_f\|_0.$

 \blacktriangleright "Classical". If M is the mutual coherence of A_f and A_g :

 $\left\| {}^{t}A_{f}p\right\|_{0} + \left\| {}^{t}A_{g}p\right\|_{0} \geq 2/M.$

► "Normalised". $\exists D > 0$ s.t. for all $p \in \mathbb{R}^n$ with $||p||_2 > D$ and $||^t A_g^{\perp} p||_2 \leq 2/3$ $||^{t}A_{f}p||_{0} + \#\{\alpha : |(^{t}A_{g}p)(\alpha)| \geq 1\} \geq 2/M.$

Unfortunately, $M \sim 1$ if A_f consists of wavelets and A_g of sinusoids...

 \blacktriangleright "Haar wavelets". Let A_f be the orthobasis of 2D Haar wavelets in $\mathbb{R}^{2^7 \times 2^7}$ and let A_{q} be 960 low frequency non-constant sinusoids. There exists $D > 0$ s.t.

$$
\left\| \,^t A_f p \right\|_0 \geq 1160,
$$

for every $p \in \mathbb{R}^n$ such that $||p||_2 > D$ and $||{}^t A_g^{\perp} p||_2 \leq 2/3$.

- 2. ... for every $p \in \mathbb{R}^n$ such that $||p||_2 > D$ and $|| {}^t A_g^{\perp} p ||_2 \leq 2/3$ there holds $\# \big(\mathrm{supp\,}{}^t\!A_f p \setminus \mathrm{supp\,} \tilde{y}_f \big) + \sum^N$ $i=1$ $\#\left(\{\alpha : |({}^t A_g p)(\alpha)| \geq 1\}\setminus \text{supp }\tilde{y}_g^i\right) > m_g + \|\tilde{y}_f\|_0.$
	- \blacktriangleright "Classical". If M is the mutual coherence of A_f and A_g :

 $\left\| {}^{t}A_{f}p\right\|_{0} + \left\| {}^{t}A_{g}p\right\|_{0} \geq 2/M.$

► "Normalised". $\exists D > 0$ s.t. for all $p \in \mathbb{R}^n$ with $||p||_2 > D$ and $||d^L A_g^{\perp} p||_2 \leq 2/3$ $||^{t}A_{f}p||_{0} + \#\{\alpha : |(^{t}A_{g}p)(\alpha)| \geq 1\} \geq 2/M.$

Unfortunately, $M \sim 1$ if A_f consists of wavelets and A_g of sinusoids...

 \blacktriangleright "Haar wavelets". Let A_f be the orthobasis of 2D Haar wavelets in $\mathbb{R}^{2^7 \times 2^7}$ and let A_{q} be 960 low frequency non-constant sinusoids. There exists $D > 0$ s.t.

$$
\left\| \,^t A_f p \right\|_0 \geq 1160,
$$

for every $p \in \mathbb{R}^n$ such that $||p||_2 > D$ and $||{}^t\!A_g^{\perp}p||_2 \leq 2/3$.

- 2. ... for every $p \in \mathbb{R}^n$ such that $||p||_2 > D$ and $|| {}^t A_g^{\perp} p ||_2 \leq 2/3$ there holds $\# \big(\mathrm{supp\,}{}^t\!A_f p \setminus \mathrm{supp\,} \tilde{y}_f \big) + \sum^N$ $i=1$ $\#\left(\{\alpha : |({}^t A_g p)(\alpha)| \geq 1\}\setminus \text{supp }\tilde{y}_g^i\right) > m_g + \|\tilde{y}_f\|_0.$
	- \blacktriangleright "Classical". If M is the mutual coherence of A_f and A_g :

 $\left\| {}^{t}A_{f}p\right\|_{0} + \left\| {}^{t}A_{g}p\right\|_{0} \geq 2/M.$

► "Normalised". $\exists D > 0$ s.t. for all $p \in \mathbb{R}^n$ with $||p||_2 > D$ and $||d^L A_g^{\perp} p||_2 \leq 2/3$ $||^{t}A_{f}p||_{0} + \#\{\alpha : |(^{t}A_{g}p)(\alpha)| \geq 1\} \geq 2/M.$

Unfortunately, $M \sim 1$ if A_f consists of wavelets and A_q of sinusoids...

 \blacktriangleright "Haar wavelets". Let A_f be the orthobasis of 2D Haar wavelets in $\mathbb{R}^{2^7 \times 2^7}$ and let A_{q} be 960 low frequency non-constant sinusoids. There exists $D > 0$ s.t.

 $\left\| \,^{t}A_{f}p\right\| _{0}\geq 1160,$

for every $p \in \mathbb{R}^n$ such that $||p||_2 > D$ and $||{}^t A_g^{\perp} p||_2 \leq 2/3$.

- 2. ... for every $p \in \mathbb{R}^n$ such that $||p||_2 > D$ and $|| {}^t A_g^{\perp} p ||_2 \leq 2/3$ there holds $\# \big(\mathrm{supp\,}{}^t\!A_f p \setminus \mathrm{supp\,} \tilde{y}_f \big) + \sum^N$ $i=1$ $\#\left(\{\alpha : |({}^t A_g p)(\alpha)| \geq 1\}\setminus \text{supp }\tilde{y}_g^i\right) > m_g + \|\tilde{y}_f\|_0.$
	- \blacktriangleright "Classical". If M is the mutual coherence of A_f and A_g :

 $\left\| {}^{t}A_{f}p\right\|_{0} + \left\| {}^{t}A_{g}p\right\|_{0} \geq 2/M.$

► "Normalised". $\exists D > 0$ s.t. for all $p \in \mathbb{R}^n$ with $||p||_2 > D$ and $||d^L A_g^{\perp} p||_2 \leq 2/3$ $||^{t}A_{f}p||_{0} + \#\{\alpha : |(^{t}A_{g}p)(\alpha)| \geq 1\} \gtrsim 2.$

Unfortunately, $M \sim 1$ if A_f consists of wavelets and A_q of sinusoids...

 \blacktriangleright "Haar wavelets". Let A_f be the orthobasis of 2D Haar wavelets in $\mathbb{R}^{2^7 \times 2^7}$ and let A_{q} be 960 low frequency non-constant sinusoids. There exists $D > 0$ s.t.

 $\left\| \,^{t}A_{f}p\right\| _{0}\geq 1160,$

for every $p \in \mathbb{R}^n$ such that $||p||_2 > D$ and $||{}^t A_g^{\perp} p||_2 \leq 2/3$.

- 2. ... for every $p \in \mathbb{R}^n$ such that $||p||_2 > D$ and $|| {}^t A_g^{\perp} p ||_2 \leq 2/3$ there holds $\# \big(\mathrm{supp\,}{}^t\!A_f p \setminus \mathrm{supp\,} \tilde{y}_f \big) + \sum^N$ $i=1$ $\#\left(\{\alpha : |({}^t A_g p)(\alpha)| \geq 1\}\setminus \text{supp }\tilde{y}_g^i\right) > m_g + \|\tilde{y}_f\|_0.$
	- \blacktriangleright "Classical". If M is the mutual coherence of A_f and A_g :

$$
\| {}^t A_f p \|_0 + \| {}^t A_g p \|_0 \ge 2/M.
$$

► "Normalised". $\exists D > 0$ s.t. for all $p \in \mathbb{R}^n$ with $||p||_2 > D$ and $||d^L A_g^{\perp} p||_2 \leq 2/3$ $||^{t}A_{f}p||_{0} + \#\{\alpha : |(^{t}A_{g}p)(\alpha)| \geq 1\} \gtrsim 2.$

Unfortunately, $M \sim 1$ if A_f consists of wavelets and A_q of sinusoids...

 \blacktriangleright "Haar wavelets". Let A_f be the orthobasis of 2D Haar wavelets in $\mathbb{R}^{2^7 \times 2^7}$ and let A_q be 960 low frequency non-constant sinusoids. There exists $D > 0$ s.t.

$$
\left\| \,^t A_f p \right\|_0 \geq 1160,
$$

for every $p \in \mathbb{R}^n$ such that $||p||_2 > D$ and $|| {}^t A_g^{\perp} p ||_2 \leq 2/3$.

Main result

The following result states that the separation method with multiple measurements gives unique and stable reconstruction.

Theorem

Assume 1 and 2 and that $\varepsilon := \rho_f + \rho_g + \eta \leq \beta/3$. Assume that $f, g_i, n_i \in \mathbb{R}^n$ satisfy $||n_i||_2 \leq \eta$ and

$$
||A_f \tilde{y}_f - f||_2 \le \rho_f, \quad ||A_g \tilde{y}_g^i - g_i||_2 \le \rho_g, \qquad i = 1, ..., N,
$$

and let $y_f \in \mathbb{R}^{m_f}$ and $y_g^i \in \mathbb{R}^{m_g}$ realise the minimum of

$$
\min_{y \in \mathbb{R}^{m_f + Nm_g}} \|y\|_0 \quad \text{subject to } \left\| [A_f, A_g] \begin{bmatrix} y_f \\ y_g^i \end{bmatrix} - h_i \right\|_2 \leq \varepsilon, \ i = 1, \dots, N,
$$
\n
$$
\text{where } h_i = f + g_i + n_i. \text{ Then}
$$
\n
$$
\left\| A_f y_f - f \right\|_2 \leq (3D + 1)\varepsilon, \quad \left\| A_g y_g^i - g_i \right\|_2 \leq (3D + 2)\varepsilon, \qquad i = 1, \dots, N.
$$

Outline of the talk

¹ [Introduction to hybrid imaging inverse problems](#page-2-0)

[Disjoint sparsity for signal separation](#page-11-0)

³ [Applications to quantitative photoacoustic tomography](#page-53-0)

It gives us the image $H(x) = \Gamma(x)\mu(x)u(x) = \mu(x)u(x)$. Need to find μ .

In the general case $\Gamma \neq 1$, apply the same approach and find $\Gamma \mu$ and u. Then by using the PDE approach all the unknowns can be reconstructed.

Giovanni S Alberti (SAM, ETH Zurich) [Disjoint sparsity and hybrid inverse problems](#page-0-0) UCL, October 9, 2015 16 / 24

It gives us the image $H(x) = \Gamma(x)\mu(x)u(x) = \mu(x)u(x)$. Need to find μ .

In the general case $\Gamma \neq 1$, apply the same approach and find $\Gamma \mu$ and u. Then by using the PDE approach all the unknowns can be reconstructed.

It gives us the image $H(x) = \Gamma(x)\mu(x)u(x) = \mu(x)u(x)$. Need to find μ .

In the general case $\Gamma \neq 1$, apply the same approach and find $\Gamma \mu$ and u. Then by using the PDE approach all the unknowns can be reconstructed.

 \blacktriangleright Multi-measurement data: $H(x) = \mu(x)u_i(x)$, where

$$
\begin{cases}\n-\Delta u_i + \mu u_i = 0 & \text{in } \Omega, \\
u_i = \varphi_i & \text{on } \partial \Omega.\n\end{cases}
$$

 \blacktriangleright Taking a log: $h_i = \log \mu + \log u_i$.

- \blacktriangleright The above method may be used if $\log \mu$ and $\log u_i$ can be sparsely represented with respect to two different dictionaries.
- \triangleright Following [Rosenthal, Razansky, Ntziachristos, 2009], observe that:
	- In the light absorption μ is a constitutive parameter of the tissue, and as such is discontinuous. Its discontinuities are typically the inclusions we are looking for;
	- In the light intensity u_i is a solution of a PDE, and as such enjoys higher regularity properties.
- \triangleright Thus, the uncertainty principle motivates these for the dictionaries:
	- \blacktriangleright A_f : Haar wavelets (curvelets, ridgelets, shearlets...)
	- \blacktriangleright A_q : low frequency trigonometric polynomials (constant included!)
- In The disjoint sparsity signal separation method may be used to recover μ .

 \blacktriangleright Multi-measurement data: $H(x) = \mu(x)u_i(x)$, where

$$
\begin{cases}\n-\Delta u_i + \mu u_i = 0 & \text{in } \Omega, \\
u_i = \varphi_i & \text{on } \partial \Omega.\n\end{cases}
$$

 \blacktriangleright Taking a log: $h_i = \log \mu + \log u_i$.

- \blacktriangleright The above method may be used if $\log \mu$ and $\log u_i$ can be sparsely represented with respect to two different dictionaries.
- \triangleright Following [Rosenthal, Razansky, Ntziachristos, 2009], observe that:
	- In the light absorption μ is a constitutive parameter of the tissue, and as such is discontinuous. Its discontinuities are typically the inclusions we are looking for;
	- In the light intensity u_i is a solution of a PDE, and as such enjoys higher regularity properties.
- \triangleright Thus, the uncertainty principle motivates these for the dictionaries:
	- \blacktriangleright A_f : Haar wavelets (curvelets, ridgelets, shearlets...)
	- \blacktriangleright A_q : low frequency trigonometric polynomials (constant included!)
- In The disjoint sparsity signal separation method may be used to recover μ .

 \blacktriangleright Multi-measurement data: $H(x) = \mu(x)u_i(x)$, where

$$
\begin{cases}\n-\Delta u_i + \mu u_i = 0 & \text{in } \Omega, \\
u_i = \varphi_i & \text{on } \partial \Omega.\n\end{cases}
$$

- \blacktriangleright Taking a log: $h_i = \log \mu + \log u_i$.
- In The above method may be used if $\log \mu$ and $\log u_i$ can be sparsely represented with respect to two different dictionaries.
- \triangleright Following [Rosenthal, Razansky, Ntziachristos, 2009], observe that:
	- In the light absorption μ is a constitutive parameter of the tissue, and as such is discontinuous. Its discontinuities are typically the inclusions we are looking for;
	- In the light intensity u_i is a solution of a PDE, and as such enjoys higher regularity properties.
- \triangleright Thus, the uncertainty principle motivates these for the dictionaries:
	- \blacktriangleright A_f : Haar wavelets (curvelets, ridgelets, shearlets...)
	- \blacktriangleright A_q : low frequency trigonometric polynomials (constant included!)
- In The disjoint sparsity signal separation method may be used to recover μ .

 \blacktriangleright Multi-measurement data: $H(x) = \mu(x)u_i(x)$, where

$$
\begin{cases}\n-\Delta u_i + \mu u_i = 0 & \text{in } \Omega, \\
u_i = \varphi_i & \text{on } \partial \Omega.\n\end{cases}
$$

- \blacktriangleright Taking a log: $h_i = \log \mu + \log u_i$.
- In The above method may be used if $\log \mu$ and $\log u_i$ can be sparsely represented with respect to two different dictionaries.
- \blacktriangleright Following [Rosenthal, Razansky, Ntziachristos, 2009], observe that:
	- In the light absorption μ is a constitutive parameter of the tissue, and as such is discontinuous. Its discontinuities are typically the inclusions we are looking for;
	- In the light intensity u_i is a solution of a PDE, and as such enjoys higher regularity properties.
- \triangleright Thus, the uncertainty principle motivates these for the dictionaries:
	- \blacktriangleright A_f : Haar wavelets (curvelets, ridgelets, shearlets...)
	- \blacktriangleright A_q : low frequency trigonometric polynomials (constant included!)
- In The disjoint sparsity signal separation method may be used to recover μ .

 \blacktriangleright Multi-measurement data: $H(x) = \mu(x)u_i(x)$, where

$$
\begin{cases}\n-\Delta u_i + \mu u_i = 0 & \text{in } \Omega, \\
u_i = \varphi_i & \text{on } \partial \Omega.\n\end{cases}
$$

- \blacktriangleright Taking a log: $h_i = \log \mu + \log u_i$.
- In The above method may be used if $\log \mu$ and $\log u_i$ can be sparsely represented with respect to two different dictionaries.
- \blacktriangleright Following [Rosenthal, Razansky, Ntziachristos, 2009], observe that:
	- In the light absorption μ is a constitutive parameter of the tissue, and as such is discontinuous. Its discontinuities are typically the inclusions we are looking for;
	- In the light intensity u_i is a solution of a PDE, and as such enjoys higher regularity properties.
- \blacktriangleright Thus, the uncertainty principle motivates these for the dictionaries:
	- \blacktriangleright A_f : Haar wavelets (curvelets, ridgelets, shearlets...)
	- \blacktriangleright A_q : low frequency trigonometric polynomials (constant included!)

In The disjoint sparsity signal separation method may be used to recover μ .

 \blacktriangleright Multi-measurement data: $H(x) = \mu(x)u_i(x)$, where

$$
\begin{cases}\n-\Delta u_i + \mu u_i = 0 & \text{in } \Omega, \\
u_i = \varphi_i & \text{on } \partial \Omega.\n\end{cases}
$$

- \blacktriangleright Taking a log: $h_i = \log \mu + \log u_i$.
- In The above method may be used if $\log \mu$ and $\log u_i$ can be sparsely represented with respect to two different dictionaries.
- \blacktriangleright Following [Rosenthal, Razansky, Ntziachristos, 2009], observe that:
	- In the light absorption μ is a constitutive parameter of the tissue, and as such is discontinuous. Its discontinuities are typically the inclusions we are looking for;
	- In the light intensity u_i is a solution of a PDE, and as such enjoys higher regularity properties.
- \blacktriangleright Thus, the uncertainty principle motivates these for the dictionaries:
	- \blacktriangleright A_f : Haar wavelets (curvelets, ridgelets, shearlets...)
	- \blacktriangleright A_q : low frequency trigonometric polynomials (constant included!)

In The disjoint sparsity signal separation method may be used to recover μ .

 \blacktriangleright Multi-measurement data: $H(x) = \mu(x)u_i(x)$, where

$$
\begin{cases}\n-\Delta u_i + \mu u_i = 0 & \text{in } \Omega, \\
u_i = \varphi_i & \text{on } \partial \Omega.\n\end{cases}
$$

- \blacktriangleright Taking a log: $h_i = \log \mu + \log u_i$.
- In The above method may be used if $\log \mu$ and $\log u_i$ can be sparsely represented with respect to two different dictionaries.
- \blacktriangleright Following [Rosenthal, Razansky, Ntziachristos, 2009], observe that:
	- In the light absorption μ is a constitutive parameter of the tissue, and as such is discontinuous. Its discontinuities are typically the inclusions we are looking for;
	- In the light intensity u_i is a solution of a PDE, and as such enjoys higher regularity properties.
- \blacktriangleright Thus, the uncertainty principle motivates these for the dictionaries:
	- \blacktriangleright A_f : Haar wavelets (curvelets, ridgelets, shearlets...)
	- \blacktriangleright A_a : low frequency trigonometric polynomials (constant included!)
- In The disjoint sparsity signal separation method may be used to recover μ .

Example 1: noise-free case, $N = 1$

Giovanni S Alberti (SAM, ETH Zurich) [Disjoint sparsity and hybrid inverse problems](#page-0-0) UCL, October 9, 2015 18 / 24

Example 1: noise-free case, $N = 1$

Example 1: noisy case, $N = 1, 3, 5$

Giovanni S Alberti (SAM, ETH Zurich) [Disjoint sparsity and hybrid inverse problems](#page-0-0) UCL, October 9, 2015 19 / 24

Example 2: the Shepp-Logan Phantom

Example 2: the Shepp-Logan Phantom with noise

Example 3: piecewise smooth

Example 4: lateral illuminations, $N = 4$

Conclusions

Past

- \triangleright The reconstruction in QPAT (and in many hybrid imaging inverse problems) require the separation of several signals $h_i = f + g_i$.
- \triangleright PDE techniques are often powerful, but sometimes they are not applicable.

- \blacktriangleright Multiple measurements and disjoint sparsity can be used to find f and $g_i.$
- \blacktriangleright Uniqueness and stability proven.
- \triangleright Orthogonal matching pursuit performs well in many numerical simulations related to quantitative photoacoustic tomography.

- \blacktriangleright How can we ensure that the light intensities u_i give the necessary incoherence, measured in terms of their disjoint sparsity? Random illuminations may help.
- Norm $l^0 \rightarrow$ norm l^1 .
- \triangleright Robust uncertainty principles (Candes, Romberg, 2006)
Conclusions

Past

- \triangleright The reconstruction in QPAT (and in many hybrid imaging inverse problems) require the separation of several signals $h_i = f + g_i$.
- \triangleright PDE techniques are often powerful, but sometimes they are not applicable.

Present

- \blacktriangleright Multiple measurements and disjoint sparsity can be used to find f and $g_i.$
- \blacktriangleright Uniqueness and stability proven.
- \triangleright Orthogonal matching pursuit performs well in many numerical simulations related to quantitative photoacoustic tomography.

- \blacktriangleright How can we ensure that the light intensities u_i give the necessary incoherence, measured in terms of their disjoint sparsity? Random illuminations may help.
- Norm $l^0 \rightarrow$ norm l^1 .
- \triangleright Robust uncertainty principles (Candes, Romberg, 2006)

Conclusions

Past

- \triangleright The reconstruction in QPAT (and in many hybrid imaging inverse problems) require the separation of several signals $h_i = f + g_i$.
- \triangleright PDE techniques are often powerful, but sometimes they are not applicable.

Present

- \blacktriangleright Multiple measurements and disjoint sparsity can be used to find f and $g_i.$
- \blacktriangleright Uniqueness and stability proven.
- \triangleright Orthogonal matching pursuit performs well in many numerical simulations related to quantitative photoacoustic tomography.

Future

- \blacktriangleright How can we ensure that the light intensities u_i give the necessary incoherence, measured in terms of their disjoint sparsity? Random illuminations may help.
- Norm $l^0 \rightarrow$ norm l^1 .
- \triangleright Robust uncertainty principles (Candes, Romberg, 2006)