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Internal data in quantitative hybrid imaging problems
I Hybrid conductivity imaging [Widlak, Scherzer, 2012]{

−div(a∇ui) = 0 in Ω,
ui = ϕi on ∂Ω.

ui(x) or a(x)∇ui(x) or a(x)
∣∣∇ui∣∣2 (x)

?−→ a

I Quantitative thermoacoustic tomography [Bal et al., 2011, Ammari et al., 2013]{
∆ui + (ω2 + iωσ)ui = 0 in Ω,
ui = ϕi on ∂Ω.

σ(x)
∣∣ui∣∣2 (x)

?−→ σ

I MREIT [Seo et al., 2012, Bal and Guo, 2013] curlEi = iωHi in Ω,
curlHi = −i(ωε+ iσ)Ei in Ω,
Ei × ν = ϕi × ν on ∂Ω.

Hi(x)
?−→ ε, σ

The measurements are meaningful at x ∈ Ω if at least uiω(x) 6= 0, ∇uiω(x) 6= 0, ...
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Why do non-zero constraints matter?
I Consider for simplicity the hybrid conductivity problem{

−div(a∇u) = 0 in Ω,
u = ϕ on ∂Ω.

with internal data ∇u and unknown a.
I With 1 measurement:

∇a · ∇u = −a∆u =⇒ ∇(log a) · ∇u = −∆u

This equation may be solved in a if a is known on ∂Ω and if

∇u(x) 6= 0, x ∈ Ω.

I With d measurements:

∇(log a) · (∇u1, · · · ,∇ud) = −(∆u1, . . . ,∆ud)

=⇒ ∇(log a) = −(∆u1, . . . ,∆ud)(∇u1, · · · ,∇ud)−1

This equation may be solved in a if a is known at x0 ∈ ∂Ω and

det
[
∇u1(x) · · · ∇ud(x)

]
6= 0, x ∈ Ω.
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Main question

Is it possible to find suitable illuminations ϕi so that the corresponding solutions
ui satisfy certain non-zero constraints, such as the absence of critical points?

Ideally, we would like to construct the ϕis a priori, namely independently of the
unknown parameters.
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Outline of the talk

1 The conductivity equation

2 The Helmholtz equation

3 The Maxwell’s equations

G. S. Alberti and Y. Capdeboscq. Lectures on elliptic methods for hybrid
inverse problems. Technical Report 2016-46, SAM, ETH Zürich, 2016.

Guillaume Bal. Hybrid inverse problems and internal functionals. In Inverse
problems and applications: inside out. II, volume 60 of Math. Sci. Res. Inst.
Publ., pages 325–368. Cambridge Univ. Press, Cambridge, 2013.

Peter Kuchment. Mathematics of hybrid imaging: a brief review. In The
mathematical legacy of Leon Ehrenpreis, volume 16 of Springer Proc. Math.,
pages 183–208. Springer, Milan, 2012.
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The Radò-Kneser-Choquet theorem
Theorem (Alessandrini Magnanini 1994, Bauman et al. 2000, Alessandrini Nesi 2015)

Let Ω ⊆ R2 be a C1,α bounded convex domain and a ∈ C0,α(Ω;R2×2) be
uniformly elliptic. Let ui ∈ H1(Ω) be the solutions to

−div(a∇ui) = 0 in Ω, ui = xi on ∂Ω.

Then
det
[
∇u1(x) ∇u2(x)

]
6= 0, x ∈ Ω.

Ω

I det
[
∇u1(x0) ∇u2(x0)

]
= 0

I Thus, α∇u1(x0) + β∇u2(x0) = 0

I Set v(x) = αu1(x) + βu2(x):
I −div(a∇v) = 0 in Ω
I ∇v(x0) = 0

I Thus, v has a saddle point in x0

I Then v has two oscillations on ∂Ω

I But v(x) = αx1 + βx2 on ∂Ω
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The failure in three dimensions

−div(a∇ui) = 0 in Ω, ui = ϕi on ∂Ω.

In three dimensions, the above result fails. Several counterexamples:
1. Laugesen 1996: the harmonic case (a ≡ 1) for a specific diffeomorphism
ϕ = (ϕ1, ϕ2)

2. Briane et al 2004: the non-constant case (homogenization) for a specific
diffeomorphism ϕ = (ϕ1, ϕ2)

3. Could it be possible to find (ϕ1, ϕ2) independently of a so that for every
x ∈ Ω

det
[
∇u1(x) ∇u2(x) ∇u3(x)

]
6= 0?

Capdeboscq 2015: No! (by using 2.)
4. What about critical points: can we find ϕ independently of a so that for

every x ∈ Ω
∇u(x) 6= 0?
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Critical points in 3D
What about critical points: can we find ϕ independently of a so that

∇u(x) 6= 0, x ∈ Ω?

Theorem (GSA, Bal, Di Cristo, ARMA 2017)

Let Ω ⊆ R3 be a bounded Lipschitz domain. Take ϕ ∈ C(∂X) ∩H 1
2 (∂X). There

exists a (nonempty open set of) a ∈ C∞(X) such that the solution u ∈ H1(X) to{
−div(a∇u) = 0 in Ω,
u = ϕ on ∂Ω,

has a critical point in Ω, namely ∇u(x) = 0 for some x ∈ Ω.

Can be extended to deal with:
I multiple boundary values;
I multiple critical points (located in arbitrarily small balls);
I and Neumann boundary conditions.

Giovanni S. Alberti (University of Genoa) Constraints in hybrid imaging RICAM, 13 July 2017 9 / 29



Critical points in 3D
What about critical points: can we find ϕ independently of a so that

∇u(x) 6= 0, x ∈ Ω?

Theorem (GSA, Bal, Di Cristo, ARMA 2017)

Let Ω ⊆ R3 be a bounded Lipschitz domain. Take ϕ ∈ C(∂X) ∩H 1
2 (∂X). There

exists a (nonempty open set of) a ∈ C∞(X) such that the solution u ∈ H1(X) to{
−div(a∇u) = 0 in Ω,
u = ϕ on ∂Ω,

has a critical point in Ω, namely ∇u(x) = 0 for some x ∈ Ω.

Can be extended to deal with:
I multiple boundary values;
I multiple critical points (located in arbitrarily small balls);
I and Neumann boundary conditions.

Giovanni S. Alberti (University of Genoa) Constraints in hybrid imaging RICAM, 13 July 2017 9 / 29



O ∇u(O) ≈ 0

X1 a→∞ =⇒ u ≈ 1

Z

X2

Ω

a→∞ =⇒ u ≈ 2

x(2) ϕ(x(2)) = 2

x(1) ϕ(x(1)) = 1
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Alternative approaches

I Complex geometrical optics solutions [Sylvester and Uhlmann, 1987]
I u(t)(x) = etxm (cos(txl) + i sin(txl)) (1 + ψt), t� 1.
I If t� 1 then u(t)(x) ≈ etxm (cos(txl) + i sin(txl)) in C1 [Bal and Uhlmann,

2010]
I The traces on the boundary of these solutions give the required ϕis
I Need smooth coefficients, construction depends on coefficients.
I Only for isotropic coefficients

I Runge approximation [Lax 1956, Bal and Uhlmann 2013]
I There exist solutions that are locally closed to the solutions of the constant

coefficient PDE.
I Based on unique continuation, non constructive.
I Also for anisotropic coefficients.

I Stability results without the constraints
I Ultrasounds + microwave [Alessandrini, 2014], Quantitative photoacoustic

tomography [Alessandrini et al., 2017]
I Based on quantitative estimates of unique continuation.
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Outline of the talk

1 The conductivity equation

2 The Helmholtz equation

3 The Maxwell’s equations
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The Helmholtz equation
I We now consider the Helmholtz equation{

∆uiω + (ω2ε+ iωσ)uiω = 0 in Ω,
uiω = ϕi on ∂Ω.

where Ω ⊆ Rd, d = 2, 3, ε, σ ∈ L∞(Ω), σ, ε ≤ Λ, ε > Λ−1.

I We are interested in the constraints:
1.

∣∣u1
ω

∣∣ (x) > 0 (nodal set)
2.

∣∣det
[
∇u2

ω · · · ∇ud+1
ω

]∣∣(x) > 0 (Jacobian)

3.
∣∣det

[
u1
ω · · · ud+1

ω

∇u1
ω · · · ∇ud+1

ω

]∣∣(x) > 0 (“augmented” Jacobian)

I Since solutions uiω are oscillatory, they will not in general satisfy these
contraints. The Radó-Kneser-Choquet theorem (constraint 2.) fails.

I CGO solutions and the Runge approximation may be used also in this case,
but the corresponding boundary conditions ϕi are not explicitly constructed.

I Is there an alternative approach?
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Multi-Frequency Approach: main result
K(n): uniform partition of A = [Kmin,Kmax] with n points

0
√
λ1

√
λN

√
λN+1

√
λN+2A

Theorem (GSA, IP 2013 & CPDE 2015)
There exist C > 0 and n ∈ N∗ depending only on Ω, Λ and A such that the
following is true. Take

ϕ1 = 1, ϕ2 = x1, . . . ϕd+1 = xd.

There exists an open cover
Ω =

⋃
ω∈K(n)

Ωω

such that for every ω ∈ K(n) and every x ∈ Ωω we have
1.
∣∣u1
ω

∣∣ (x) ≥ C,
2.
∣∣det

[
∇u2

ω · · · ∇ud+1
ω

]∣∣(x) ≥ C,

3.
∣∣det

[
u1
ω · · · ud+1

ω

∇u1
ω · · · ∇ud+1

ω

]∣∣(x) ≥ C.
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Multi-Frequency Approach: basic idea I

As an example, let us consider the 1D case with ε = 1 and σ = 0.
1.
∣∣u1
ω(x)

∣∣ ≥ C: the zero set of u1
ω moves when ω varies:

u1
ω

ϕ(−π) = 1, ϕ(π) = 1

−π π

1

−1
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Multi-Frequency Approach: basic idea II

1.
∣∣u1
ω(x)

∣∣ ≥ C: the zero set of u1
ω may not move if the boundary condition is

not suitably chosen:

u1
ω

ϕ(−π) = −1, ϕ(π) = 1

−π π

1

−1
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Multi-Frequency Approach: ω = 0

1.
∣∣u1

0(x)
∣∣ > 0 everywhere for ω = 0 =⇒ the zeros “move”

u1
ω

u1
0

ϕ(−π) = 1, ϕ(π) = 1

−π π

1

−1

Thus, we study first the ω = 0 case.
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Multi-Frequency Approach: ω = 0

1.
∣∣u1

0(x)
∣∣ ≯ 0 everywhere for ω = 0 =⇒ some zeros may “get stuck”

u1
ω

u1
0

ϕ(−π) = −1, ϕ(π) = 1

−π π

1

−1

It seems that all depends on the ω = 0 case: the unknowns ε and σ disappear!
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What happens in ω = 0?

{
∆uiω + (ω2ε+ iωσ)uiω = 0 in Ω,
uiω = ϕi on ∂Ω.

1.
∣∣u1
ω

∣∣ (x) ≥ C > 0, 2.
∣∣det

[
∇u2

ω · · · ∇ud+1
ω

]∣∣(x) ≥ C > 0,

3.
∣∣det

[
u1
ω · · · ud+1

ω

∇u1
ω · · · ∇ud+1

ω

]∣∣(x) ≥ C > 0.

These conditions are immediately satisfied by choosing the boundary values

ϕ1 = 1,

ϕ2 = x1,

...
ϕd+1 = xd.
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How to pass from 0 to ω?

√
λ1

√
λ2

√
λ3

√
λ4A

{
∆uiω + (ω2ε+ iωσ)uiω = 0 in Ω,
uiω = ϕi on ∂Ω.

ω ∈ C \
√

Σ, Σ = {λl}l

A = —

Lemma
The map C \

√
Σ −→ C1(Ω), ω 7→ uiω is holomorphic.

I The set Zx = {ω ∈ A : u1
ω(x) = 0} is finite (consider 1. for simplicity)

I Namely, the zero level sets move!
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How many frenquencies are needed?

Theorem (GSA and Capdeboscq, CM 2016)
Take ϕ = 1. Assume that σ and ε are real analytic. The set{

(ω1, . . . , ωd+1) ∈ Ad+1 : min
Ω

(
∣∣uϕω1

∣∣+ · · ·+
∣∣uϕωd+1

∣∣) > 0
}

is open and dense in Ad+1.
In other words, (almost any) d+ 1 frequencies are ok.

Proof.

I Classical elliptic regularity theory implies that uϕω is real analytic
I The set X = {x ∈ Ω :

∣∣uϕω1

∣∣ = · · · =
∣∣uϕωl∣∣ = 0} is an analytic variety

I Stratification for analytic varieties: X =
⋃
pAp, Ap analytic submanifolds

I Use that {ω : uϕω(x) = 0} consists of isolated points (holomorphicity in ω)
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Some related works

I Ammari et al. (2016) have successfully adapted this method to

div((ωε+ iσ)∇uiω) = 0.

I In 2D, everything works with a ∈ C0,α(Ω;R2×2) and

div(a∇uiω) + (ω2ε+ iωσ)uiω = 0

by using the absence of critical points for the conductivity equation.
I In 3D, we already know that in general for ω = 0 we may have critical points.

What can we do?
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What if a 6≈ 1 in 3D?
The case ω = 0 may not be needed for the theory to work:

Theorem (GSA, ARMA 2016)
Suppose a, ε ∈ C2(R3) and σ = 0. For a generic C2 bounded domain Ω and a
generic ϕ ∈ C1(Ω) there exists a finite K ⊆ A such that∑

ω∈K

∣∣∇uω(x)
∣∣ > 0, in Ω.
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Acousto-electromagnetic tomography (Ammari et al., 2012)

I Model{
∆uω + ω2εuω = 0 in Ω,
∂uω
∂ν − iωuω = ϕ on ∂Ω.

I Internal data:

ψω = |uω|2∇ε

I Linearised problem:

Dψω[ε](ρ) 7→ ρ

In order to have well-posedness of the linearised inverse problem we need∑
ω∈K
‖Dψω[ε](ρ)‖ ≥ C ‖ρ‖ , ρ ∈ H1(Ω),

or equivalently kerDψω[ε] = {0}.
Theorem (Alberti, Ammari, Ruan, 2014) This holds true with a priori determined
frequencies K and stability constant CK .
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Numerical experiments

(a) K = {10} (b) K = {15}

(c) K = {20}

(d) K = {10, 15, 20}

Giovanni S. Alberti (University of Genoa) Constraints in hybrid imaging RICAM, 13 July 2017 25 / 29



Numerical experiments

(a) K = {10} (b) K = {15}

(c) K = {20} (d) K = {10, 15, 20}

Giovanni S. Alberti (University of Genoa) Constraints in hybrid imaging RICAM, 13 July 2017 25 / 29



Outline of the talk

1 The conductivity equation

2 The Helmholtz equation

3 The Maxwell’s equations
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Constraints for Maxwell’s equations

I MREIT [Seo et al., 2012, Bal and Guo, 2013] curlEi = iωHi in Ω,
curlHi = −i(ωε+ iσ)Ei in Ω,
Ei × ν = ϕi × ν on ∂Ω.

Hi(x)
?−→ ε, σ

I The relevant constraint in this case is

|det
[
E1(x) E2(x) E3(x)

]
| > 0.

I CGO solutions may be used [Chen Yang, IP 2013].
I The multi-frequency method discussed above works as well [GSA, JDE 2015].
I In both cases, the regularity of the solutions is a fundamental ingredient.
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Regularity for Maxwell’s equations

Theorem (GSA, 2016)
Assume that

ε, µ ∈ C0,α(Ω;C3×3), ‖(µ, ε)‖C0,α ≤ Λ

and that are uniformly elliptic (constant Λ). Take Je, Jm ∈ C0,α(Ω;C3) and
G ∈ C1,α(curl,Ω). Let (E,H) ∈ H(curl,Ω)2 be a weak solution of curlH = iωεE + Je in Ω,

curlE = −iωµH + Jm in Ω,
E × ν = G× ν on ∂Ω,

Then E,H ∈ C0,α(Ω;C3) and

‖(E,H)‖C0,α ≤ C
(
‖(E,H)‖L2(Ω;C3)2 + ‖G‖C1,α(curl,Ω) + ‖(Je, Jm)‖C0,α(Ω;C3)2

)
for some constant C depending only on Ω, Λ and ω.

Take-home message: regularity for Maxwell is exactly as in the elliptic case!
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Conclusions

I The inversion in quantitative hybrid imaging often requires the solutions to
the direct problem to satisfy certain non-zero constraints.

I It is in general difficult to enforce these constraints a priori (independently of
the unknown coefficients), but certain techniques are available:

I The Radó-Kneser-Choquet theorem and its generalizations (only in 2D,
counterexamples in 3D)

I CGO solutions
I The Runge approximation
I The multi-frequency approach

I Are these constraints generically satisfied for a fixed number of boundary
conditions?
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