Non-zero constraints in quantitative coupled physics imaging

Giovanni S. Alberti

University of Genoa, Department of Mathematics

Quantitative Tomographic Imaging – Radon meets Bell and Maxwell

 \blacktriangleright Hybrid conductivity imaging [Widlak, Scherzer, 2012]

$$
\begin{cases}\n-\text{div}(a\nabla u^i) = 0 & \text{in } \Omega, \\
u^i = \varphi_i & \text{on } \partial\Omega.\n\end{cases}
$$

 $u^{i}(x)$ or $a(x) \nabla u^{i}(x)$ or $a(x) |\nabla u^{i}|$ $^{2}\left(x\right)$

▶ Quantitative thermoacoustic tomography [Bal et al., 2011, Ammari et al., 2013]

$$
\begin{cases} \Delta u^i + (\omega^2 + i\omega\sigma) u^i = 0 & \text{in } \Omega, \\ u^i = \varphi_i & \text{on } \partial\Omega. \end{cases}
$$

$$
\sigma(x) |u^i|^2(x) \longrightarrow \sigma
$$

MREIT [Seo et al., 2012, Bal and Guo, 2013]

$$
\begin{cases}\n\text{curl}E^i = \text{i}\omega H^i & \text{in } \Omega, \\
\text{curl}H^i = -\text{i}(\omega\varepsilon + \text{i}\sigma)E^i & \text{in } \Omega, \\
E^i \times \nu = \varphi_i \times \nu & \text{on } \partial\Omega.\n\end{cases}
$$

$$
H^i(x) \qquad \xrightarrow{?} \quad \varepsilon, \sigma
$$

The measurements are meaningful at $x\in\Omega$ if at least $u_\omega^i(x)\neq 0$, $\nabla u_\omega^i(x)\neq 0$, ...

? \longrightarrow a

▶ Hybrid conductivity imaging [Widlak, Scherzer, 2012], Quantitative PAT

$$
\begin{cases}\n-\text{div}(a\nabla u^i) + \mu u^i = 0 & \text{in } \Omega, \\
u^i = \varphi_i & \text{on } \partial\Omega.\n\end{cases}
$$

 $u^{i}(x)$ or $a(x) \nabla u^{i}(x)$ or $a(x) |\nabla u^{i}|$ $2^{2}(x)$ or $\mu(x) u^{i}(x) \longrightarrow a, \mu$

^I Quantitative thermoacoustic tomography [Bal et al., 2011, Ammari et al., 2013]

$$
\begin{cases} \Delta u^i + (\omega^2 + i\omega\sigma) u^i = 0 & \text{in } \Omega, \\ u^i = \varphi_i & \text{on } \partial\Omega. \end{cases}
$$

$$
\sigma(x) |u^i|^2(x) \longrightarrow \sigma
$$

 \triangleright MREIT [Seo et al., 2012, Bal and Guo, 2013]

$$
\begin{cases} \operatorname{curl} E^i = \mathrm{i} \omega H^i & \text{in } \Omega, \\ \operatorname{curl} H^i = -\mathrm{i} (\omega \varepsilon + \mathrm{i} \sigma) E^i & \text{in } \Omega, \\ E^i \times \nu = \varphi_i \times \nu & \text{on } \partial \Omega. \end{cases}
$$

$$
H^i(x) \qquad \xrightarrow{?} \quad \varepsilon, \sigma
$$

The measurements are meaningful at $x\in\Omega$ if at least $u_\omega^i(x)\neq 0$, $\nabla u_\omega^i(x)\neq 0$, ...

▶ Hybrid conductivity imaging [Widlak, Scherzer, 2012], Quantitative PAT

$$
\begin{cases}\n-\text{div}(a\nabla u^i) + \mu u^i = 0 & \text{in } \Omega, \\
u^i = \varphi_i & \text{on } \partial\Omega.\n\end{cases}
$$

Quantitative thermoacoustic tomography [Bal et al., 2011, Ammari et al., 2013]

$$
\begin{cases} \Delta u^i + (\omega^2 + i\omega\sigma) u^i = 0 & \text{in } \Omega, \\ u^i = \varphi_i & \text{on } \partial\Omega. \end{cases}
$$

$$
\sigma(x) |u^i|^2(x) \longrightarrow \sigma
$$

^I MREIT [Seo et al., 2012, Bal and Guo, 2013]

$$
\begin{cases}\n\text{curl}E^i = \text{i}\omega H^i & \text{in } \Omega, \\
\text{curl}H^i = -\text{i}(\omega \varepsilon + \text{i}\sigma)E^i & \text{in } \Omega, \\
E^i \times \nu = \varphi_i \times \nu & \text{on } \partial \Omega.\n\end{cases}
$$

$$
H^i(x) \qquad \xrightarrow{?} \quad \varepsilon, \sigma
$$

The measurements are meaningful at $x\in\Omega$ if at least $u_\omega^i(x)\neq 0$, $\nabla u_\omega^i(x)\neq 0$, ...

▶ Hybrid conductivity imaging [Widlak, Scherzer, 2012], Quantitative PAT

$$
\begin{cases}\n-\text{div}(a\nabla u^i) + \mu u^i = 0 & \text{in } \Omega, \\
u^i = \varphi_i & \text{on } \partial\Omega.\n\end{cases}
$$

Quantitative thermoacoustic tomography [Bal et al., 2011, Ammari et al., 2013]

$$
\begin{cases} \Delta u^i + (\omega^2 + i\omega\sigma) u^i = 0 & \text{in } \Omega, \\ u^i = \varphi_i & \text{on } \partial\Omega. \end{cases}
$$

$$
\sigma(x) |u^i|^2(x) \longrightarrow \sigma
$$

MREIT [Seo et al., 2012, Bal and Guo, 2013]

$$
\begin{cases}\n\operatorname{curl} E^i = \mathrm{i}\omega H^i & \text{in } \Omega, \\
\operatorname{curl} H^i = -\mathrm{i}(\omega \varepsilon + \mathrm{i}\sigma) E^i & \text{in } \Omega, \\
E^i \times \nu = \varphi_i \times \nu & \text{on } \partial \Omega.\n\end{cases}
$$

$$
H^i(x) \qquad \xrightarrow{\cdot} \quad \varepsilon, \sigma
$$

The measurements are meaningful at $x\in\Omega$ if at least $u_\omega^i(x)\neq 0$, $\nabla u_\omega^i(x)\neq 0$, ...

▶ Hybrid conductivity imaging [Widlak, Scherzer, 2012], Quantitative PAT

$$
\begin{cases}\n-\text{div}(a\nabla u^i) + \mu u^i = 0 & \text{in } \Omega, \\
u^i = \varphi_i & \text{on } \partial\Omega.\n\end{cases}
$$

Quantitative thermoacoustic tomography [Bal et al., 2011, Ammari et al., 2013]

$$
\begin{cases} \Delta u^i + (\omega^2 + i\omega\sigma) u^i = 0 & \text{in } \Omega, \\ u^i = \varphi_i & \text{on } \partial\Omega. \end{cases}
$$

$$
\sigma(x) |u^i|^2(x) \longrightarrow \sigma
$$

MREIT [Seo et al., 2012, Bal and Guo, 2013]

$$
\begin{cases}\n\operatorname{curl} E^i = \mathrm{i}\omega H^i & \text{in } \Omega, \\
\operatorname{curl} H^i = -\mathrm{i}(\omega \varepsilon + \mathrm{i}\sigma) E^i & \text{in } \Omega, \\
E^i \times \nu = \varphi_i \times \nu & \text{on } \partial \Omega.\n\end{cases}
$$

$$
H^i(x) \qquad \xrightarrow{?} \quad \varepsilon, \sigma
$$

The measurements are meaningful at $x\in\Omega$ if at least $u_{\omega}^i(x)\neq 0$, $\nabla u_{\omega}^i(x)\neq 0$, ...

Why do non-zero constraints matter?

 \triangleright Consider for simplicity the hybrid conductivity problem

$$
\begin{cases}\n-\text{div}(a\nabla u) = 0 & \text{in } \Omega, \\
u = \varphi & \text{on } \partial\Omega.\n\end{cases}
$$

with internal data ∇u and unknown a.

 \triangleright With 1 measurement:

 $\nabla a \cdot \nabla u = -a\Delta u \implies \nabla(\log a) \cdot \nabla u = -\Delta u$

This equation may be solved in a if a is known on $\partial\Omega$ and if

$$
\nabla u(x) \neq 0, \qquad x \in \Omega.
$$

 \blacktriangleright With d measurements:

$$
\nabla(\log a) \cdot (\nabla u^1, \cdots, \nabla u^d) = -(\Delta u^1, \dots, \Delta u^d)
$$

\n
$$
\implies \nabla(\log a) = -(\Delta u^1, \dots, \Delta u^d)(\nabla u^1, \dots, \nabla u^d)^{-1}
$$

This equation may be solved in a if a is known at $x_0 \in \partial \Omega$ and

det $[\nabla u^1(x) \quad \cdots \quad \nabla u^d(x)] \neq 0, \quad x \in \Omega.$

Giovanni S. Alberti (University of Genoa) [Constraints in hybrid imaging](#page-0-0) RICAM, 13 July 2017 3 / 29

Why do non-zero constraints matter?

 \triangleright Consider for simplicity the hybrid conductivity problem

$$
\begin{cases}\n-\text{div}(a\nabla u) = 0 & \text{in } \Omega, \\
u = \varphi & \text{on } \partial\Omega.\n\end{cases}
$$

with internal data ∇u and unknown a .

 \triangleright With 1 measurement:

$$
\nabla a \cdot \nabla u = -a\Delta u \quad \implies \quad \nabla(\log a) \cdot \nabla u = -\Delta u
$$

This equation may be solved in a if a is known on $\partial\Omega$ and if

$$
\nabla u(x) \neq 0, \qquad x \in \Omega.
$$

With d measurements:

$$
\nabla(\log a) \cdot (\nabla u^1, \cdots, \nabla u^d) = -(\Delta u^1, \dots, \Delta u^d)
$$

\n
$$
\implies \nabla(\log a) = -(\Delta u^1, \dots, \Delta u^d)(\nabla u^1, \dots, \nabla u^d)^{-1}
$$

This equation may be solved in a if a is known at $x_0 \in \partial \Omega$ and

det $[\nabla u^1(x) \quad \cdots \quad \nabla u^d(x)] \neq 0, \quad x \in \Omega.$

Giovanni S. Alberti (University of Genoa) [Constraints in hybrid imaging](#page-0-0) RICAM, 13 July 2017 3 / 29

Why do non-zero constraints matter?

 \triangleright Consider for simplicity the hybrid conductivity problem

$$
\begin{cases}\n-\text{div}(a\nabla u) = 0 & \text{in } \Omega, \\
u = \varphi & \text{on } \partial\Omega.\n\end{cases}
$$

with internal data ∇u and unknown a .

 \triangleright With 1 measurement:

$$
\nabla a \cdot \nabla u = -a\Delta u \quad \implies \quad \nabla(\log a) \cdot \nabla u = -\Delta u
$$

This equation may be solved in a if a is known on $\partial\Omega$ and if

$$
\nabla u(x) \neq 0, \qquad x \in \Omega.
$$

 \blacktriangleright With d measurements:

$$
\nabla(\log a) \cdot (\nabla u^1, \cdots, \nabla u^d) = -(\Delta u^1, \dots, \Delta u^d)
$$

$$
\implies \nabla(\log a) = -(\Delta u^1, \dots, \Delta u^d)(\nabla u^1, \dots, \nabla u^d)^{-1}
$$

This equation may be solved in a if a is known at $x_0 \in \partial \Omega$ and

$$
\det \begin{bmatrix} \nabla u^1(x) & \cdots & \nabla u^d(x) \end{bmatrix} \neq 0, \qquad x \in \Omega.
$$

Giovanni S. Alberti (University of Genoa) [Constraints in hybrid imaging](#page-0-0) RICAM, 13 July 2017 3 / 29

Main question

Is it possible to find suitable illuminations φ_i so that the corresponding solutions u^i satisfy certain non-zero constraints, such as the absence of critical points?

Ideally, we would like to construct the φ_i s a priori, namely independently of the unknown parameters.

Main question

Is it possible to find suitable illuminations φ_i so that the corresponding solutions u^i satisfy certain non-zero constraints, such as the absence of critical points?

Ideally, we would like to construct the φ_i s a priori, namely independently of the unknown parameters.

Outline of the talk

- [The conductivity equation](#page-12-0)
- [The Helmholtz equation](#page-31-0)
- [The Maxwell's equations](#page-75-0)
	- G. S. Alberti and Y. Capdeboscq. Lectures on elliptic methods for hybrid inverse problems. Technical Report 2016-46, SAM, ETH Zürich, 2016.
	- Guillaume Bal. Hybrid inverse problems and internal functionals. In Inverse problems and applications: inside out. II, volume 60 of Math. Sci. Res. Inst. Publ., pages 325–368. Cambridge Univ. Press, Cambridge, 2013.
	- Peter Kuchment. Mathematics of hybrid imaging: a brief review. In The mathematical legacy of Leon Ehrenpreis, volume 16 of Springer Proc. Math., pages 183–208. Springer, Milan, 2012.

Outline of the talk

1 [The conductivity equation](#page-12-0)

[The Helmholtz equation](#page-31-0)

[The Maxwell's equations](#page-75-0)

Theorem (Alessandrini Magnanini 1994, Bauman et al. 2000, Alessandrini Nesi 2015)

Let $\Omega \subseteq \mathbb{R}^2$ be a $C^{1,\alpha}$ bounded convex domain and $a \in C^{0,\alpha}(\overline{\Omega}; \mathbb{R}^{2\times 2})$ be uniformly elliptic. Let $u^i \in H^1(\Omega)$ be the solutions to

 $-\text{div}(a\nabla u^i) = 0$ in Ω , $u^i = x_i$ on $\partial \Omega$.

Then

$$
\det \begin{bmatrix} \nabla u^1(x) & \nabla u^2(x) \end{bmatrix} \neq 0, \qquad x \in \Omega.
$$

- \blacktriangleright det $[\nabla u^1(x_0) \quad \nabla u^2(x_0)] = 0$
- ► Thus, $\alpha \nabla u^1(x_0) + \beta \nabla u^2(x_0) = 0$
- Set $v(x) = \alpha u^1(x) + \beta u^2(x)$:
	- \blacktriangleright $-\text{div}(a\nabla v) = 0$ in Ω $\blacktriangleright \nabla v(x_0) = 0$
- \blacktriangleright Thus, v has a saddle point in x_0
- \triangleright Then v has two oscillations on $\partial\Omega$
- \triangleright But $v(x) = \alpha x_1 + \beta x_2$ on $\partial \Omega$

Theorem (Alessandrini Magnanini 1994, Bauman et al. 2000, Alessandrini Nesi 2015)

Let $\Omega \subseteq \mathbb{R}^2$ be a $C^{1,\alpha}$ bounded convex domain and $a \in C^{0,\alpha}(\overline{\Omega}; \mathbb{R}^{2\times 2})$ be uniformly elliptic. Let $u^i \in H^1(\Omega)$ be the solutions to

 $-\text{div}(a\nabla u^i) = 0$ in Ω , $u^i = x_i$ on $\partial \Omega$.

Then

$$
\det \begin{bmatrix} \nabla u^1(x) & \nabla u^2(x) \end{bmatrix} \neq 0, \qquad x \in \Omega.
$$

- \blacktriangleright det $[\nabla u^1(x_0) \quad \nabla u^2(x_0)] = 0$
- ► Thus, $\alpha \nabla u^1(x_0) + \beta \nabla u^2(x_0) = 0$
- Set $v(x) = \alpha u^1(x) + \beta u^2(x)$:
	- \blacktriangleright $-\text{div}(a\nabla v) = 0$ in Ω
	- $\blacktriangleright \nabla v(x_0) = 0$

 \blacktriangleright Thus, v has a saddle point in x_0

 \triangleright Then v has two oscillations on $\partial\Omega$

Theorem (Alessandrini Magnanini 1994, Bauman et al. 2000, Alessandrini Nesi 2015)

Let $\Omega \subseteq \mathbb{R}^2$ be a $C^{1,\alpha}$ bounded convex domain and $a \in C^{0,\alpha}(\overline{\Omega}; \mathbb{R}^{2\times 2})$ be uniformly elliptic. Let $u^i \in H^1(\Omega)$ be the solutions to

 $-\text{div}(a\nabla u^i) = 0$ in Ω , $u^i = x_i$ on $\partial \Omega$.

Then

$$
\det \begin{bmatrix} \nabla u^1(x) & \nabla u^2(x) \end{bmatrix} \neq 0, \qquad x \in \Omega.
$$

- \blacktriangleright det $[\nabla u^1(x_0) \quad \nabla u^2(x_0)] = 0$ ► Thus, $\alpha \nabla u^1(x_0) + \beta \nabla u^2(x_0) = 0$
- Set $v(x) = \alpha u^1(x) + \beta u^2(x)$:
	- \blacktriangleright $-\text{div}(a\nabla v) = 0$ in Ω
	- $\blacktriangleright \nabla v(x_0) = 0$

 \blacktriangleright Thus, v has a saddle point in x_0

 \triangleright Then v has two oscillations on $\partial\Omega$

Theorem (Alessandrini Magnanini 1994, Bauman et al. 2000, Alessandrini Nesi 2015)

Let $\Omega \subseteq \mathbb{R}^2$ be a $C^{1,\alpha}$ bounded convex domain and $a \in C^{0,\alpha}(\overline{\Omega}; \mathbb{R}^{2\times 2})$ be uniformly elliptic. Let $u^i \in H^1(\Omega)$ be the solutions to

 $-\text{div}(a\nabla u^i) = 0$ in Ω , $u^i = x_i$ on $\partial \Omega$.

Then

$$
\det \begin{bmatrix} \nabla u^1(x) & \nabla u^2(x) \end{bmatrix} \neq 0, \qquad x \in \Omega.
$$

- \blacktriangleright det $[\nabla u^1(x_0) \quad \nabla u^2(x_0)] = 0$ ► Thus, $\alpha \nabla u^1(x_0) + \beta \nabla u^2(x_0) = 0$ Set $v(x) = \alpha u^1(x) + \beta u^2(x)$: \blacktriangleright $-\text{div}(a\nabla v) = 0$ in Ω $\blacktriangleright \nabla v(x_0) = 0$ \blacktriangleright Thus, v has a saddle point in x_0
- \triangleright Then v has two oscillations on $\partial\Omega$

Theorem (Alessandrini Magnanini 1994, Bauman et al. 2000, Alessandrini Nesi 2015)

Let $\Omega \subseteq \mathbb{R}^2$ be a $C^{1,\alpha}$ bounded convex domain and $a \in C^{0,\alpha}(\overline{\Omega}; \mathbb{R}^{2 \times 2})$ be uniformly elliptic. Let $u^i \in H^1(\Omega)$ be the solutions to

 $-\text{div}(a\nabla u^i) = 0$ in Ω , $u^i = x_i$ on $\partial \Omega$.

Then

$$
\det \begin{bmatrix} \nabla u^1(x) & \nabla u^2(x) \end{bmatrix} \neq 0, \qquad x \in \Omega.
$$

- \blacktriangleright det $[\nabla u^1(x_0) \quad \nabla u^2(x_0)] = 0$
- ► Thus, $\alpha \nabla u^1(x_0) + \beta \nabla u^2(x_0) = 0$
- Set $v(x) = \alpha u^1(x) + \beta u^2(x)$:
	- \blacktriangleright $-\text{div}(a\nabla v) = 0$ in Ω
	- $\blacktriangleright \nabla v(x_0) = 0$
- \blacktriangleright Thus, v has a saddle point in x_0

Then v has two oscillations on $\partial\Omega$

Theorem (Alessandrini Magnanini 1994, Bauman et al. 2000, Alessandrini Nesi 2015)

Let $\Omega \subseteq \mathbb{R}^2$ be a $C^{1,\alpha}$ bounded convex domain and $a \in C^{0,\alpha}(\overline{\Omega}; \mathbb{R}^{2 \times 2})$ be uniformly elliptic. Let $u^i \in H^1(\Omega)$ be the solutions to

 $-\text{div}(a\nabla u^i) = 0$ in Ω , $u^i = x_i$ on $\partial \Omega$.

Then

$$
\det \begin{bmatrix} \nabla u^1(x) & \nabla u^2(x) \end{bmatrix} \neq 0, \qquad x \in \Omega.
$$

- \blacktriangleright det $[\nabla u^1(x_0) \quad \nabla u^2(x_0)] = 0$ ► Thus, $\alpha \nabla u^1(x_0) + \beta \nabla u^2(x_0) = 0$
- Set $v(x) = \alpha u^1(x) + \beta u^2(x)$:
	- \blacktriangleright $-\text{div}(a\nabla v) = 0$ in Ω
	- $\blacktriangleright \nabla v(x_0) = 0$
- \blacktriangleright Thus, v has a saddle point in x_0
- \blacktriangleright Then v has two oscillations on $\partial\Omega$

Theorem (Alessandrini Magnanini 1994, Bauman et al. 2000, Alessandrini Nesi 2015)

Let $\Omega \subseteq \mathbb{R}^2$ be a $C^{1,\alpha}$ bounded convex domain and $a \in C^{0,\alpha}(\overline{\Omega}; \mathbb{R}^{2 \times 2})$ be uniformly elliptic. Let $u^i \in H^1(\Omega)$ be the solutions to

 $-\text{div}(a\nabla u^i) = 0$ in Ω , $u^i = x_i$ on $\partial \Omega$.

Then

$$
\det \begin{bmatrix} \nabla u^1(x) & \nabla u^2(x) \end{bmatrix} \neq 0, \qquad x \in \Omega.
$$

- \blacktriangleright det $[\nabla u^1(x_0) \quad \nabla u^2(x_0)] = 0$ ► Thus, $\alpha \nabla u^1(x_0) + \beta \nabla u^2(x_0) = 0$ Set $v(x) = \alpha u^1(x) + \beta u^2(x)$:
	- \blacktriangleright $-\text{div}(a\nabla v) = 0$ in Ω
	- $\blacktriangleright \nabla v(x_0) = 0$
- \blacktriangleright Thus, v has a saddle point in x_0
- \blacktriangleright Then v has two oscillations on $\partial\Omega$
- \triangleright But $v(x) = \alpha x_1 + \beta x_2$ on $\partial \Omega$

$$
-\text{div}(a\nabla u^i) = 0 \qquad \text{in } \Omega, \qquad u^i = \varphi_i \qquad \text{on } \partial \Omega.
$$

In three dimensions, the above result fails. Several counterexamples:

- 1. Laugesen 1996: the harmonic case ($a \equiv 1$) for a specific diffeomorphism $\varphi=(\varphi^1,\varphi^2)$
- 2. Briane et al 2004: the non-constant case (homogenization) for a specific diffeomorphism $\varphi=(\varphi^1,\varphi^2)$
- 3. Could it be possible to find (φ^1,φ^2) independently of a so that for every $x \in \Omega$

$$
\det \begin{bmatrix} \nabla u^1(x) & \nabla u^2(x) & \nabla u^3(x) \end{bmatrix} \neq 0?
$$

Capdeboscq 2015: No! (by using 2.)

$$
\nabla u(x) \neq 0?
$$

$$
-\text{div}(a\nabla u^i) = 0 \qquad \text{in } \Omega, \qquad u^i = \varphi_i \qquad \text{on } \partial \Omega.
$$

In three dimensions, the above result fails. Several counterexamples:

- 1. Laugesen 1996: the harmonic case $(a \equiv 1)$ for a specific diffeomorphism $\varphi=(\varphi^1,\varphi^2)$
- 2. Briane et al 2004: the non-constant case (homogenization) for a specific diffeomorphism $\varphi=(\varphi^1,\varphi^2)$
- 3. Could it be possible to find (φ^1,φ^2) independently of a so that for every $x \in \Omega$

$$
\det \begin{bmatrix} \nabla u^1(x) & \nabla u^2(x) & \nabla u^3(x) \end{bmatrix} \neq 0?
$$

Capdeboscq 2015: No! (by using 2.)

$$
\nabla u(x) \neq 0?
$$

$$
-\text{div}(a\nabla u^i) = 0 \qquad \text{in } \Omega, \qquad u^i = \varphi_i \qquad \text{on } \partial \Omega.
$$

In three dimensions, the above result fails. Several counterexamples:

- 1. Laugesen 1996: the harmonic case $(a \equiv 1)$ for a specific diffeomorphism $\varphi=(\varphi^1,\varphi^2)$
- 2. Briane et al 2004: the non-constant case (homogenization) for a specific diffeomorphism $\varphi=(\varphi^1,\varphi^2)$
- 3. Could it be possible to find (φ^1,φ^2) independently of a so that for every $x \in \Omega$

$$
\det \begin{bmatrix} \nabla u^1(x) & \nabla u^2(x) & \nabla u^3(x) \end{bmatrix} \neq 0?
$$

Capdeboscq 2015: No! (by using 2.)

$$
\nabla u(x)\neq 0?
$$

$$
-\text{div}(a\nabla u^i) = 0 \qquad \text{in } \Omega, \qquad u^i = \varphi_i \qquad \text{on } \partial \Omega.
$$

In three dimensions, the above result fails. Several counterexamples:

- 1. Laugesen 1996: the harmonic case $(a \equiv 1)$ for a specific diffeomorphism $\varphi=(\varphi^1,\varphi^2)$
- 2. Briane et al 2004: the non-constant case (homogenization) for a specific diffeomorphism $\varphi=(\varphi^1,\varphi^2)$
- 3. Could it be possible to find (φ^1,φ^2) independently of a so that for every $x \in \Omega$

$$
\det \begin{bmatrix} \nabla u^1(x) & \nabla u^2(x) & \nabla u^3(x) \end{bmatrix} \neq 0?
$$

Capdeboscq 2015: No! (by using 2.)

$$
\nabla u(x)\neq 0?
$$

$$
-\text{div}(a\nabla u^i) = 0 \qquad \text{in } \Omega, \qquad u^i = \varphi_i \qquad \text{on } \partial \Omega.
$$

In three dimensions, the above result fails. Several counterexamples:

- 1. Laugesen 1996: the harmonic case $(a \equiv 1)$ for a specific diffeomorphism $\varphi=(\varphi^1,\varphi^2)$
- 2. Briane et al 2004: the non-constant case (homogenization) for a specific diffeomorphism $\varphi=(\varphi^1,\varphi^2)$
- 3. Could it be possible to find (φ^1,φ^2) independently of a so that for every $x \in \Omega$

$$
\det \begin{bmatrix} \nabla u^1(x) & \nabla u^2(x) & \nabla u^3(x) \end{bmatrix} \neq 0?
$$

Capdeboscq 2015: No! (by using 2.)

$$
\nabla u(x)\neq 0?
$$

Critical points in 3D

What about critical points: can we find φ independently of a so that

$$
\nabla u(x) \neq 0, \qquad x \in \Omega?
$$

Theorem (GSA, Bal, Di Cristo, ARMA 2017)

Let $\Omega \subseteq \mathbb{R}^3$ be a bounded Lipschitz domain. Take $\varphi \in C(\partial X) \cap H^{\frac{1}{2}}(\partial X)$. There exists a (nonempty open set of) $a\in C^\infty(\overline X)$ such that the solution $u\in H^1(X)$ to

$$
\begin{cases}\n-\text{div}(a\nabla u) = 0 & \text{in } \Omega, \\
u = \varphi & \text{on } \partial\Omega,\n\end{cases}
$$

has a critical point in Ω , namely $\nabla u(x) = 0$ for some $x \in \Omega$.

Can be extended to deal with:

- \blacktriangleright multiple boundary values;
- multiple critical points (located in arbitrarily small balls);
- **D** and Neumann boundary conditions.

Critical points in 3D

What about critical points: can we find φ independently of a so that

$$
\nabla u(x) \neq 0, \qquad x \in \Omega?
$$

Theorem (GSA, Bal, Di Cristo, ARMA 2017)

Let $\Omega \subseteq \mathbb{R}^3$ be a bounded Lipschitz domain. Take $\varphi \in C(\partial X) \cap H^{\frac{1}{2}}(\partial X)$. There exists a (nonempty open set of) $a\in C^\infty(\overline X)$ such that the solution $u\in H^1(X)$ to

$$
\begin{cases}\n-\text{div}(a\nabla u) = 0 & \text{in } \Omega, \\
u = \varphi & \text{on } \partial\Omega,\n\end{cases}
$$

has a critical point in Ω , namely $\nabla u(x) = 0$ for some $x \in \Omega$.

Can be extended to deal with:

- \blacktriangleright multiple boundary values;
- \triangleright multiple critical points (located in arbitrarily small balls);
- \blacktriangleright and Neumann boundary conditions.

Alternative approaches

- ► Complex geometrical optics solutions [Sylvester and Uhlmann, 1987]
	- $u^{(t)}(x) = e^{tx_m} \left(\cos(tx_l) + i \sin(tx_l)\right) (1 + \psi_t), \quad t \gg 1.$
	- If $t \gg 1$ then $u^{(t)}(x) \approx e^{tx_m} (\cos(tx_l) + i \sin(tx_l))$ in C^1 [Bal and Uhlmann, 2010]
	- ► The traces on the boundary of these solutions give the required φ_i s
	- \blacktriangleright Need smooth coefficients, construction depends on coefficients.
	- \triangleright Only for isotropic coefficients
- \triangleright Runge approximation [Lax 1956, Bal and Uhlmann 2013]
	- \triangleright There exist solutions that are locally closed to the solutions of the constant coefficient PDE.
	- \triangleright Based on unique continuation, non constructive.
	- \triangleright Also for anisotropic coefficients.
- \triangleright Stability results without the constraints
	- \triangleright Ultrasounds + microwave [Alessandrini, 2014], Quantitative photoacoustic tomography [Alessandrini et al., 2017]
	- \triangleright Based on quantitative estimates of unique continuation.

Alternative approaches

- ► Complex geometrical optics solutions [Sylvester and Uhlmann, 1987]
	- $u^{(t)}(x) = e^{tx_m} \left(\cos(tx_l) + i \sin(tx_l)\right) (1 + \psi_t), \quad t \gg 1.$
	- If $t \gg 1$ then $u^{(t)}(x) \approx e^{tx_m} (\cos(tx_l) + i \sin(tx_l))$ in C^1 [Bal and Uhlmann, 2010]
	- If The traces on the boundary of these solutions give the required φ_i s
	- \blacktriangleright Need smooth coefficients, construction depends on coefficients.
	- \triangleright Only for isotropic coefficients
- \triangleright Runge approximation [Lax 1956, Bal and Uhlmann 2013]
	- \blacktriangleright There exist solutions that are locally closed to the solutions of the constant coefficient PDE.
	- \triangleright Based on unique continuation, non constructive.
	- \blacktriangleright Also for anisotropic coefficients.

\triangleright Stability results without the constraints

- \triangleright Ultrasounds + microwave [Alessandrini, 2014], Quantitative photoacoustic tomography [Alessandrini et al., 2017]
- \triangleright Based on quantitative estimates of unique continuation.

Alternative approaches

- ► Complex geometrical optics solutions [Sylvester and Uhlmann, 1987]
	- $u^{(t)}(x) = e^{tx_m} \left(\cos(tx_l) + i \sin(tx_l)\right) (1 + \psi_t), \quad t \gg 1.$
	- If $t \gg 1$ then $u^{(t)}(x) \approx e^{tx_m} (\cos(tx_l) + i \sin(tx_l))$ in C^1 [Bal and Uhlmann, 2010]
	- ► The traces on the boundary of these solutions give the required φ_i s
	- \blacktriangleright Need smooth coefficients, construction depends on coefficients.
	- \triangleright Only for isotropic coefficients
- \triangleright Runge approximation [Lax 1956, Bal and Uhlmann 2013]
	- \triangleright There exist solutions that are locally closed to the solutions of the constant coefficient PDE.
	- \triangleright Based on unique continuation, non constructive.
	- \blacktriangleright Also for anisotropic coefficients.

\triangleright Stability results without the constraints

- \triangleright Ultrasounds + microwave [Alessandrini, 2014], Quantitative photoacoustic tomography [Alessandrini et al., 2017]
- \triangleright Based on quantitative estimates of unique continuation.

Outline of the talk

[The conductivity equation](#page-12-0)

2 [The Helmholtz equation](#page-31-0)

[The Maxwell's equations](#page-75-0)

 \triangleright We now consider the Helmholtz equation

$$
\left\{\begin{array}{ll} \Delta u^i_\omega + (\omega^2 \varepsilon + {\rm i} \omega \sigma) \, u^i_\omega = 0 & \quad {\rm in} \ \Omega, \\ u^i_\omega = \varphi_i & \quad {\rm on} \ \partial \Omega. \end{array}\right.
$$

where $\Omega \subseteq \mathbb{R}^d$, $d = 2, 3$, $\varepsilon, \sigma \in L^{\infty}(\Omega)$, $\sigma, \varepsilon \leq \Lambda$, $\varepsilon > \Lambda^{-1}$.

 \triangleright We are interested in the constraints:

1.
$$
|u^1_\omega|(x) > 0
$$
 (nodal set)
\n2. $|\det [\nabla u^2_\omega \cdots \nabla u^{d+1}_\omega]|(x) > 0$ (Jacobian)
\n3. $|\det [\nabla u^1_\omega \cdots \nabla u^{d+1}_\omega]|(x) > 0$ ("augmented" Jacobian)

- \blacktriangleright Since solutions u^i_ω are oscillatory, they will not in general satisfy these contraints. The Radó-Kneser-Choquet theorem (constraint 2.) fails.
- \triangleright CGO solutions and the Runge approximation may be used also in this case, but the corresponding boundary conditions φ_i are not explicitly constructed.

 \triangleright We now consider the Helmholtz equation

$$
\left\{\begin{array}{ll} \Delta u^i_\omega + (\omega^2 \varepsilon + {\rm i} \omega \sigma) \, u^i_\omega = 0 & \quad {\rm in} \ \Omega, \\ u^i_\omega = \varphi_i & \quad {\rm on} \ \partial \Omega. \end{array}\right.
$$

where $\Omega \subseteq \mathbb{R}^d$, $d = 2, 3$, $\varepsilon, \sigma \in L^{\infty}(\Omega)$, $\sigma, \varepsilon \leq \Lambda$, $\varepsilon > \Lambda^{-1}$.

 \triangleright We are interested in the constraints:

- 1. $|u_{\omega}^{1}|(x) > 0$ (nodal set) 2. $\left|\det\begin{bmatrix} \nabla u_{\omega}^2 & \cdots & \nabla u_{\omega}^{d+1} \end{bmatrix}\right| (x) > 0$ (Jacobian) 3. $\left|\det\begin{bmatrix} u^1_{\omega} & \cdots & u^{d+1}_{\omega} \\ \nabla u^1_{\omega} & \cdots & \nabla u^{d+1}_{\omega} \end{bmatrix}\right|$ $\Bigg] \big| (x) > 0$ ("augmented" Jacobian)
- \blacktriangleright Since solutions u^i_ω are oscillatory, they will not in general satisfy these contraints. The Radó-Kneser-Choquet theorem (constraint 2.) fails.
- \triangleright CGO solutions and the Runge approximation may be used also in this case, but the corresponding boundary conditions φ_i are not explicitly constructed.

 \triangleright We now consider the Helmholtz equation

$$
\left\{\begin{array}{ll} \Delta u^i_\omega + (\omega^2 \varepsilon + {\rm i} \omega \sigma) \, u^i_\omega = 0 & \quad {\rm in} \ \Omega, \\ u^i_\omega = \varphi_i & \quad {\rm on} \ \partial \Omega. \end{array}\right.
$$

where $\Omega \subseteq \mathbb{R}^d$, $d = 2, 3$, $\varepsilon, \sigma \in L^{\infty}(\Omega)$, $\sigma, \varepsilon \leq \Lambda$, $\varepsilon > \Lambda^{-1}$.

 \triangleright We are interested in the constraints:

1.
$$
|u^1_\omega|(x) > 0
$$
 (nodal set)
\n2. $|\det [\nabla u^2_\omega \cdots \nabla u^{d+1}_\omega]|(x) > 0$ (Jacobian)
\n3. $|\det \begin{bmatrix} u^1_\omega & \cdots & u^{d+1}_\omega \\ \nabla u^1_\omega & \cdots & \nabla u^{d+1}_\omega \end{bmatrix}|(x) > 0$ ("augmented" Jacobian)

 \blacktriangleright Since solutions u^i_ω are oscillatory, they will not in general satisfy these contraints. The Radó-Kneser-Choquet theorem (constraint 2.) fails.

 \triangleright CGO solutions and the Runge approximation may be used also in this case, but the corresponding boundary conditions φ_i are not explicitly constructed.

 \triangleright We now consider the Helmholtz equation

$$
\left\{\begin{array}{ll} \Delta u^i_\omega + (\omega^2 \varepsilon + {\rm i} \omega \sigma) \, u^i_\omega = 0 & \quad {\rm in} \ \Omega, \\ u^i_\omega = \varphi_i & \quad {\rm on} \ \partial \Omega. \end{array}\right.
$$

where $\Omega \subseteq \mathbb{R}^d$, $d = 2, 3$, $\varepsilon, \sigma \in L^{\infty}(\Omega)$, $\sigma, \varepsilon \leq \Lambda$, $\varepsilon > \Lambda^{-1}$.

 \triangleright We are interested in the constraints:

1.
$$
|u^1_\omega|(x) > 0
$$
 (nodal set)
\n2. $|\det [\nabla u^2_\omega \cdots \nabla u^{d+1}_\omega]|(x) > 0$ (Jacobian)
\n3. $|\det \begin{bmatrix} u^1_\omega & \cdots & u^{d+1}_\omega \\ \nabla u^1_\omega & \cdots & \nabla u^{d+1}_\omega \end{bmatrix}|(x) > 0$ ("augmented" Jacobian)

- \blacktriangleright Since solutions u^i_ω are oscillatory, they will not in general satisfy these contraints. The Radó-Kneser-Choquet theorem (constraint 2.) fails.
- \triangleright CGO solutions and the Runge approximation may be used also in this case, but the corresponding boundary conditions φ_i are not explicitly constructed.
The Helmholtz equation

 \triangleright We now consider the Helmholtz equation

$$
\left\{\begin{array}{ll} \Delta u^i_\omega + (\omega^2 \varepsilon + {\rm i} \omega \sigma) \, u^i_\omega = 0 & \quad {\rm in} \ \Omega, \\ u^i_\omega = \varphi_i & \quad {\rm on} \ \partial \Omega. \end{array} \right.
$$

where $\Omega \subseteq \mathbb{R}^d$, $d = 2, 3$, $\varepsilon, \sigma \in L^{\infty}(\Omega)$, $\sigma, \varepsilon \leq \Lambda$, $\varepsilon > \Lambda^{-1}$.

 \triangleright We are interested in the constraints:

1.
$$
|u^1_\omega|(x) > 0
$$
 (nodal set)
\n2. $|\det [\nabla u^2_\omega \cdots \nabla u^{d+1}_\omega]|(x) > 0$ (Jacobian)
\n3. $|\det [\nabla u^1_\omega \cdots \nabla u^{d+1}_\omega]|(x) > 0$ ("augmented" Jacobian)

- \blacktriangleright Since solutions u^i_ω are oscillatory, they will not in general satisfy these contraints. The Radó-Kneser-Choquet theorem (constraint 2.) fails.
- \triangleright CGO solutions and the Runge approximation may be used also in this case, but the corresponding boundary conditions φ_i are not explicitly constructed.
- \blacktriangleright Is there an alternative approach?

Multi-Frequency Approach: main result

 $K^{(n)}$: uniform partition of $\mathcal{A} = [K_{min}, K_{max}]$ with n points

There exist $C > 0$ and $n \in \mathbb{N}^*$ depending only on Ω , Λ and $\mathcal A$ such that the following is true. Take

$$
\varphi_1=1, \qquad \varphi_2=x_1, \qquad \ldots \qquad \varphi_{d+1}=x_d.
$$

There exists an open cover

$$
\overline{\Omega}=\bigcup_{\omega\in K^{(n)}}\Omega_\omega
$$

such that for every $\omega \in K^{(n)}$ and every $x \in \Omega_\omega$ we have

1.
$$
|u_{\omega}^1|(x) \ge C
$$
,
\n2. $|\det [\nabla u_{\omega}^2 \cdots \nabla u_{\omega}^{d+1}]|(x) \ge C$,
\n3. $|\det [\nabla u_{\omega}^1 \cdots \nabla u_{\omega}^{d+1}]|(x) \ge C$.

Multi-Frequency Approach: main result

 $K^{(n)}$: uniform partition of $\mathcal{A} = [K_{min}, K_{max}]$ with n points

There exist $C > 0$ and $n \in \mathbb{N}^*$ depending only on Ω , Λ and $\mathcal A$ such that the following is true. Take

$$
\varphi_1=1, \qquad \varphi_2=x_1, \qquad \ldots \qquad \varphi_{d+1}=x_d.
$$

There exists an open cover

$$
\overline{\Omega}=\bigcup_{\omega\in K^{(n)}}\Omega_\omega
$$

such that for every $\omega \in K^{(n)}$ and every $x \in \Omega_\omega$ we have

1.
$$
|u_{\omega}^1|(x) \ge C
$$
,
\n2. $|\det [\nabla u_{\omega}^2 \cdots \nabla u_{\omega}^{d+1}]|(x) \ge C$,
\n3. $|\det [\nabla u_{\omega}^1 \cdots u_{\omega}^{d+1} \nabla u_{\omega}^{d+1}]|(x) \ge C$.

Multi-Frequency Approach: main result

 $K^{(n)}$: uniform partition of $\mathcal{A} = [K_{min}, K_{max}]$ with n points

Theorem (GSA, IP 2013 & CPDE 2015)

There exist $C > 0$ and $n \in \mathbb{N}^*$ depending only on Ω , Λ and $\mathcal A$ such that the following is true. Take

$$
\varphi_1 = 1, \qquad \varphi_2 = x_1, \qquad \dots \qquad \varphi_{d+1} = x_d.
$$

There exists an open cover

$$
\overline{\Omega}=\bigcup_{\omega\in K^{(n)}}\Omega_\omega
$$

such that for every $\omega \in K^{(n)}$ and every $x \in \Omega_\omega$ we have

1.
$$
|u_{\omega}^1|(x) \ge C
$$
,
\n2. $|\det [\nabla u_{\omega}^2 \cdots \nabla u_{\omega}^{d+1}]|(x) \ge C$,
\n3. $|\det [\nabla u_{\omega}^1 \cdots \nabla u_{\omega}^{d+1}]|(x) \ge C$.

Multi-Frequency Approach: basic idea I

As an example, let us consider the 1D case with $\varepsilon = 1$ and $\sigma = 0$. 1. $|u_{\omega}^1(x)| \geq C$: the zero set of u_{ω}^1 moves when ω varies:

Multi-Frequency Approach: basic idea I

As an example, let us consider the 1D case with $\varepsilon = 1$ and $\sigma = 0$. 1. $|u_{\omega}^1(x)| \geq C$: the zero set of u_{ω}^1 moves when ω varies:

Multi-Frequency Approach: basic idea II

1. $|u_{\omega}^1(x)| \geq C$: the zero set of u_{ω}^1 may not move if the boundary condition is not suitably chosen:

Multi-Frequency Approach: basic idea II

1. $|u_{\omega}^1(x)| \geq C$: the zero set of u_{ω}^1 may not move if the boundary condition is not suitably chosen:

Multi-Frequency Approach: $\omega = 0$

1. $|u_0^1(x)| > 0$ everywhere for $\omega = 0 \implies$ the zeros "move"

Multi-Frequency Approach: $\omega = 0$

1. $|u_0^1(x)| \nless 0$ everywhere for $\omega = 0 \implies$ some zeros may "get stuck"

It seems that all depends on the $\omega = 0$ case: the unknowns ε and σ disappear!

Multi-Frequency Approach: $\omega = 0$

1. $|u_0^1(x)| \nless 0$ everywhere for $\omega = 0 \implies$ some zeros may "get stuck"

It seems that all depends on the $\omega = 0$ case: the unknowns ε and σ disappear!

$$
\begin{cases} \Delta u_{\omega}^{i} + (\omega^{2} \varepsilon + i \omega \sigma) u_{\omega}^{i} = 0 & \text{in } \Omega, \\ u_{\omega}^{i} = \varphi_{i} & \text{on } \partial \Omega. \end{cases}
$$

1.
$$
|u_{\omega}^1|(x) \ge C > 0
$$
,
\n2. $|\det \left[\nabla u_{\omega}^2 \cdots \nabla u_{\omega}^{d+1}\right] | (x) \ge C > 0$,
\n3. $|\det \left[\nabla u_{\omega}^1 \cdots \nabla u_{\omega}^{d+1}\right] | (x) \ge C > 0$.

$$
\varphi_1 = 1,
$$

\n
$$
\varphi_2 = x_1,
$$

\n
$$
\vdots
$$

\n
$$
\varphi_{d+1} = x_d.
$$

$$
\begin{cases} \Delta u_0^i = 0 & \text{in } \Omega, \\ u_0^i = \varphi_i & \text{on } \partial \Omega. \end{cases}
$$

1.
$$
|u_{\omega}^1|(x) \ge C > 0
$$
,
\n2. $|\det \left[\nabla u_{\omega}^2 \cdots \nabla u_{\omega}^{d+1}\right] | (x) \ge C > 0$,
\n3. $|\det \left[\nabla u_{\omega}^1 \cdots \nabla u_{\omega}^{d+1}\right] | (x) \ge C > 0$.

$$
\varphi_1 = 1,
$$

\n
$$
\varphi_2 = x_1,
$$

\n
$$
\vdots
$$

\n
$$
\varphi_{d+1} = x_d.
$$

$$
\begin{cases} \Delta u_0^i = 0 & \text{in } \Omega, \\ u_0^i = \varphi_i & \text{on } \partial \Omega. \end{cases}
$$

1.
$$
|u_{\omega}^1|(x) \ge C > 0
$$
,
\n2. $|\det \left[\nabla u_{\omega}^2 \cdots \nabla u_{\omega}^{d+1}\right]|(x) \ge C > 0$,
\n3. $|\det \left[\nabla u_{\omega}^1 \cdots \nabla u_{\omega}^{d+1}\right] | (x) \ge C > 0$.

$$
\varphi_1 = 1,
$$

\n
$$
\varphi_2 = x_1,
$$

\n
$$
\vdots
$$

\n
$$
\varphi_{d+1} = x_d.
$$

$$
\begin{cases} \Delta u_0^i = 0 & \text{in } \Omega, \\ u_0^i = \varphi_i & \text{on } \partial \Omega. \end{cases}
$$

1.
$$
|u_{\omega}^1|(x) \ge C > 0
$$
, 2. $|\det [\nabla u_{\omega}^2 \cdots \nabla u_{\omega}^{d+1}](x) \ge C > 0$,
3. $|\det [\nabla u_{\omega}^1 \cdots \nabla u_{\omega}^{d+1}](x) \ge C > 0$.

$$
\varphi_1 = 1,
$$

\n
$$
\varphi_2 = x_1,
$$

\n
$$
\vdots
$$

\n
$$
\varphi_{d+1} = x_d.
$$

The map $\mathbb{C}\setminus \sqrt{\Sigma}\longrightarrow C^1(\overline{\Omega})$, $\omega\mapsto u^i_\omega$ is holomorphic.

- ► The set $Z_x = \{ \omega \in \mathcal{A} : u^1_{\omega}(x) = 0 \}$ is finite (consider 1. for simplicity)
- \triangleright Namely, the zero level sets move!

The map $\mathbb{C}\setminus \sqrt{\Sigma}\longrightarrow C^1(\overline{\Omega})$, $\omega\mapsto u^i_\omega$ is holomorphic.

- ► The set $Z_x = \{ \omega \in \mathcal{A} : u^1_{\omega}(x) = 0 \}$ is finite (consider 1. for simplicity)
- \triangleright Namely, the zero level sets move!

Lemma

The map $\mathbb{C}\setminus \sqrt{\Sigma}\longrightarrow C^1(\overline{\Omega})$, $\omega\mapsto u^i_\omega$ is holomorphic.

- ► The set $Z_x = \{ \omega \in \mathcal{A} : u^1_{\omega}(x) = 0 \}$ is finite (consider 1. for simplicity)
- \triangleright Namely, the zero level sets move!

Lemma

The map $\mathbb{C}\setminus \sqrt{\Sigma}\longrightarrow C^1(\overline{\Omega})$, $\omega\mapsto u^i_\omega$ is holomorphic.

► The set $Z_x = \{ \omega \in \mathcal{A} : u^1_\omega(x) = 0 \}$ is finite (consider 1. for simplicity)

 \triangleright Namely, the zero level sets move!

Lemma

$$
\textit{The map $\mathbb{C}\setminus\sqrt{\Sigma}\longrightarrow C^1(\overline{\Omega})$, $\omega\mapsto u^i_\omega$ is holomorphic.}
$$

- ► The set $Z_x = \{ \omega \in \mathcal{A} : u^1_\omega(x) = 0 \}$ is finite (consider 1. for simplicity)
- \blacktriangleright Namely, the zero level sets move!

Theorem (GSA and Capdeboscq, CM 2016)

Take $\varphi = 1$. Assume that σ and ε are real analytic. The set

$$
\left\{(\omega_1,\ldots,\omega_{d+1})\in\mathcal{A}^{d+1}:\min_{\overline{\Omega}}(|u_{\omega_1}^{\varphi}|+\cdots+|u_{\omega_{d+1}}^{\varphi}|)>0\right\}
$$

is open and dense in \mathcal{A}^{d+1} . In other words, (almost any) $d+1$ frequencies are ok.

Proof.

- \blacktriangleright Classical elliptic regularity theory implies that u_{ω}^{φ} is real analytic
- ► The set $X = \{x \in \Omega : |u^\varphi_{\omega_1}| = \cdots = |u^\varphi_{\omega_l}| = 0\}$ is an analytic variety
- \blacktriangleright Stratification for analytic varieties: $X = \bigcup_p A_p.$ A_p analytic submanifolds
- \blacktriangleright Use that $\{\omega: u_{\omega}^{\varphi}(x)=0\}$ consists of isolated points (holomorphicity in ω)

Theorem (GSA and Capdeboscq, CM 2016)

Take $\varphi = 1$. Assume that σ and ε are real analytic. The set

$$
\left\{(\omega_1,\ldots,\omega_{d+1})\in\mathcal{A}^{d+1}:\min_{\overline{\Omega}}(|u_{\omega_1}^{\varphi}|+\cdots+|u_{\omega_{d+1}}^{\varphi}|)>0\right\}
$$

is open and dense in \mathcal{A}^{d+1} . In other words, (almost any) $d+1$ frequencies are ok.

Proof

- \blacktriangleright Classical elliptic regularity theory implies that u_{ω}^{φ} is real analytic
- ► The set $X = \{x \in \Omega : |u^\varphi_{\omega_1}| = \cdots = |u^\varphi_{\omega_l}| = 0\}$ is an analytic variety
- \blacktriangleright Stratification for analytic varieties: $X = \bigcup_p A_p.$ A_p analytic submanifolds
- \blacktriangleright Use that $\{\omega: u_{\omega}^{\varphi}(x)=0\}$ consists of isolated points (holomorphicity in ω)

Theorem (GSA and Capdeboscq, CM 2016)

Take $\varphi = 1$. Assume that σ and ε are real analytic. The set

$$
\left\{(\omega_1,\ldots,\omega_{d+1})\in\mathcal{A}^{d+1}:\min_{\overline{\Omega}}(|u_{\omega_1}^{\varphi}|+\cdots+|u_{\omega_{d+1}}^{\varphi}|)>0\right\}
$$

is open and dense in \mathcal{A}^{d+1} . In other words, (almost any) $d+1$ frequencies are ok.

Proof

- \blacktriangleright Classical elliptic regularity theory implies that u_{ω}^{φ} is real analytic
- ► The set $X = \{x \in \Omega : |u^\varphi_{\omega_1}| = \cdots = |u^\varphi_{\omega_l}| = 0\}$ is an analytic variety

 \blacktriangleright Stratification for analytic varieties: $X = \bigcup_p A_p.$ A_p analytic submanifolds

 \blacktriangleright Use that $\{\omega: u_{\omega}^{\varphi}(x)=0\}$ consists of isolated points (holomorphicity in ω)

Theorem (GSA and Capdeboscq, CM 2016)

Take $\varphi = 1$. Assume that σ and ε are real analytic. The set

$$
\left\{(\omega_1,\ldots,\omega_{d+1})\in\mathcal{A}^{d+1}:\min_{\overline{\Omega}}(|u_{\omega_1}^{\varphi}|+\cdots+|u_{\omega_{d+1}}^{\varphi}|)>0\right\}
$$

is open and dense in \mathcal{A}^{d+1} . In other words, (almost any) $d+1$ frequencies are ok.

Proof

- \blacktriangleright Classical elliptic regularity theory implies that u_{ω}^{φ} is real analytic
- ► The set $X = \{x \in \Omega : |u^\varphi_{\omega_1}| = \cdots = |u^\varphi_{\omega_l}| = 0\}$ is an analytic variety
- \blacktriangleright Stratification for analytic varieties: $X = \bigcup_p A_p$, A_p analytic submanifolds

 \blacktriangleright Use that $\{\omega: u_{\omega}^{\varphi}(x)=0\}$ consists of isolated points (holomorphicity in ω)

Theorem (GSA and Capdeboscq, CM 2016)

Take $\varphi = 1$. Assume that σ and ε are real analytic. The set

$$
\left\{(\omega_1,\ldots,\omega_{d+1})\in\mathcal{A}^{d+1}:\min_{\overline{\Omega}}(|u_{\omega_1}^{\varphi}|+\cdots+|u_{\omega_{d+1}}^{\varphi}|)>0\right\}
$$

is open and dense in \mathcal{A}^{d+1} . In other words, (almost any) $d+1$ frequencies are ok.

Proof

- \blacktriangleright Classical elliptic regularity theory implies that u_{ω}^{φ} is real analytic
- ► The set $X = \{x \in \Omega : |u^\varphi_{\omega_1}| = \cdots = |u^\varphi_{\omega_l}| = 0\}$ is an analytic variety
- \blacktriangleright Stratification for analytic varieties: $X = \bigcup_p A_p$, A_p analytic submanifolds
- \blacktriangleright Use that $\{\omega: u_{\omega}^{\varphi}(x) = 0\}$ consists of isolated points (holomorphicity in ω)

Some related works

\triangleright Ammari et al. (2016) have successfully adapted this method to $\operatorname{div}((\omega \varepsilon + i \sigma) \nabla u_{\omega}^i) = 0.$

► In 2D, everything works with $a \in C^{0,\alpha}(\Omega;\mathbb{R}^{2\times 2})$ and

$$
\operatorname{div}(a\nabla u_{\omega}^i) + (\omega^2 \varepsilon + \mathrm{i}\omega \sigma) u_{\omega}^i = 0
$$

by using the absence of critical points for the conductivity equation.

In 3D, we already know that in general for $\omega = 0$ we may have critical points. What can we do?

Some related works

 \triangleright Ammari et al. (2016) have successfully adapted this method to

$$
\operatorname{div}((\omega \varepsilon + i \sigma) \nabla u_{\omega}^{i}) = 0.
$$

► In 2D, everything works with $a \in C^{0,\alpha}(\Omega;\mathbb{R}^{2\times 2})$ and

$$
\operatorname{div}(a\nabla u_{\omega}^i) + (\omega^2 \varepsilon + \mathrm{i} \omega \sigma) u_{\omega}^i = 0
$$

by using the absence of critical points for the conductivity equation.

In 3D, we already know that in general for $\omega = 0$ we may have critical points. What can we do?

Some related works

 \triangleright Ammari et al. (2016) have successfully adapted this method to

$$
\operatorname{div}((\omega \varepsilon + i \sigma) \nabla u_{\omega}^{i}) = 0.
$$

► In 2D, everything works with $a \in C^{0,\alpha}(\Omega;\mathbb{R}^{2\times 2})$ and

$$
\operatorname{div}(a\nabla u_{\omega}^i) + (\omega^2 \varepsilon + \mathrm{i} \omega \sigma) u_{\omega}^i = 0
$$

by using the absence of critical points for the conductivity equation.

In 3D, we already know that in general for $\omega = 0$ we may have critical points. What can we do?

What if $a \not\approx 1$ in 3D?

The case $\omega = 0$ may not be needed for the theory to work:

Suppose $a, \varepsilon \in C^2(\mathbb{R}^3)$ and $\sigma = 0$. For a generic C^2 bounded domain Ω and a generic $\varphi\in C^1(\overline{\Omega})$ there exists a finite $K\subseteq \mathcal{A}$ such that

$$
\sum_{\omega \in K} |\nabla u_{\omega}(x)| > 0, \quad \text{in } \Omega.
$$

What if $a \not\approx 1$ in 3D?

The case $\omega = 0$ may not be needed for the theory to work:

Theorem (GSA, ARMA 2016)

Suppose $a, \varepsilon \in C^2(\mathbb{R}^3)$ and $\sigma = 0$. For a generic C^2 bounded domain Ω and a generic $\varphi \in C^1(\overline{\Omega})$ there exists a finite $K \subseteq \mathcal{A}$ such that

$$
\sum_{\omega \in K} |\nabla u_{\omega}(x)| > 0, \quad \text{in } \Omega.
$$

 \blacktriangleright Model $\begin{cases} \Delta u_{\omega} + \omega^2 \varepsilon u_{\omega} = 0 \text{ in } \Omega, \\ \frac{\partial u_{\omega}}{\partial \nu} - i \omega u_{\omega} = \varphi \text{ on } \partial \Omega. \end{cases}$

 \blacktriangleright Internal data:

 \blacktriangleright Linearised problem: $D\psi_{\omega}[\varepsilon](\rho) \mapsto \rho$

In order to have well-posedness of the linearised inverse problem we need $\|D\psi_\omega[\varepsilon](\rho)\| \ge C \| \rho \|, \qquad \rho \in H^1(\Omega),$

or equivalently ker $D\psi_\omega[\varepsilon] = \{0\}.$

Theorem (Alberti, Ammari, Ruan, 2014) This holds true with a priori determined frequencies K and stability constant C_K .

Giovanni S. Alberti (University of Genoa) [Constraints in hybrid imaging](#page-0-0) RICAM, 13 July 2017 24 / 29

 \blacktriangleright Model $\begin{cases} \Delta u_{\omega} + \omega^2 \varepsilon u_{\omega} = 0 \text{ in } \Omega, \\ \frac{\partial u_{\omega}}{\partial \nu} - i \omega u_{\omega} = \varphi \text{ on } \partial \Omega. \end{cases}$

 \blacktriangleright Internal data:

 \blacktriangleright Linearised problem: $D\psi_{\omega}[\varepsilon](\rho) \mapsto \rho$

In order to have well-posedness of the linearised inverse problem we need $\|D\psi_\omega[\varepsilon](\rho)\| \ge C \| \rho \|, \qquad \rho \in H^1(\Omega),$

or equivalently ker $D\psi_\omega[\varepsilon] = \{0\}.$

Theorem (Alberti, Ammari, Ruan, 2014) This holds true with a priori determined frequencies K and stability constant C_K .

 \blacktriangleright Model $\begin{cases} \Delta u_{\omega} + \omega^2 \varepsilon u_{\omega} = 0 \text{ in } \Omega, \\ \frac{\partial u_{\omega}}{\partial \nu} - i \omega u_{\omega} = \varphi \text{ on } \partial \Omega. \end{cases}$

 \blacktriangleright Internal data: $\psi_{\omega} = |u_{\omega}|^2 \nabla \varepsilon$

 \blacktriangleright Linearised problem: $D\psi_{\omega}[\varepsilon](\rho) \mapsto \rho$

In order to have well-posedness of the linearised inverse problem we need $\|D\psi_\omega[\varepsilon](\rho)\| \ge C \| \rho \|, \qquad \rho \in H^1(\Omega),$

or equivalently ker $D\psi_\omega[\varepsilon] = \{0\}.$

Theorem (Alberti, Ammari, Ruan, 2014) This holds true with a priori determined frequencies K and stability constant C_K .

Giovanni S. Alberti (University of Genoa) [Constraints in hybrid imaging](#page-0-0) RICAM, 13 July 2017 24 / 29

 \blacktriangleright Model $\begin{cases} \Delta u_{\omega} + \omega^2 \varepsilon u_{\omega} = 0 \text{ in } \Omega, \\ \frac{\partial u_{\omega}}{\partial \nu} - i \omega u_{\omega} = \varphi \text{ on } \partial \Omega. \end{cases}$

 \blacktriangleright Internal data: $\psi_{\omega} = |u_{\omega}|^2 \nabla \varepsilon$ \blacktriangleright Linearised problem:

 $D\psi_{\omega}[\varepsilon](\rho) \mapsto \rho$

In order to have well-posedness of the linearised inverse problem we need $\|D\psi_\omega[\varepsilon](\rho)\| \ge C \| \rho \|, \qquad \rho \in H^1(\Omega),$

or equivalently ker $D\psi_\omega[\varepsilon] = \{0\}.$

Theorem (Alberti, Ammari, Ruan, 2014) This holds true with a priori determined frequencies K and stability constant C_K .

Giovanni S. Alberti (University of Genoa) [Constraints in hybrid imaging](#page-0-0) RICAM, 13 July 2017 24 / 29

 \blacktriangleright Model $\begin{cases} \Delta u_{\omega} + \omega^2 \varepsilon u_{\omega} = 0 \text{ in } \Omega, \\ \frac{\partial u_{\omega}}{\partial \nu} - i \omega u_{\omega} = \varphi \text{ on } \partial \Omega. \end{cases}$

 \blacktriangleright Internal data: $\psi_{\omega} = |u_{\omega}|^2 \nabla \varepsilon$ \blacktriangleright Linearised problem:

 $D\psi_{\omega}[\varepsilon](\rho) \mapsto \rho$

In order to have well-posedness of the linearised inverse problem we need $\|D\psi_\omega[\varepsilon](\rho)\| \ge C \| \rho \|, \qquad \rho \in H^1(\Omega),$

or equivalently ker $D\psi_\omega[\varepsilon] = \{0\}.$

Theorem (Alberti, Ammari, Ruan, 2014) This holds true with a priori determined frequencies K and stability constant C_K .

 \blacktriangleright Model $\begin{cases} \Delta u_{\omega} + \omega^2 \varepsilon u_{\omega} = 0 \text{ in } \Omega, \\ \frac{\partial u_{\omega}}{\partial \nu} - i \omega u_{\omega} = \varphi \text{ on } \partial \Omega. \end{cases}$

 \blacktriangleright Internal data: $\psi_{\omega} = |u_{\omega}|^2 \nabla \varepsilon$ \blacktriangleright Linearised problem:

 $D\psi_{\omega}[\varepsilon](\rho) \mapsto \rho$

In order to have well-posedness of the linearised inverse problem we need

 \sum $||D\psi_{\omega}[\varepsilon](\rho)|| \ge C_K ||\rho||$, $\rho \in H^1(\Omega)$, ω∈K

or equivalently $\cap_{\omega \in K}$ ker $D\psi_{\omega}[\varepsilon] = \{0\}.$

Theorem (Alberti, Ammari, Ruan, 2014) This holds true with a priori determined frequencies K and stability constant C_K .

Giovanni S. Alberti (University of Genoa) [Constraints in hybrid imaging](#page-0-0) RICAM, 13 July 2017 24 / 29
Acousto-electromagnetic tomography (Ammari et al., 2012)

 \blacktriangleright Model $\begin{cases} \Delta u_{\omega} + \omega^2 \varepsilon u_{\omega} = 0 \text{ in } \Omega, \\ \frac{\partial u_{\omega}}{\partial \nu} - i \omega u_{\omega} = \varphi \text{ on } \partial \Omega. \end{cases}$

 \blacktriangleright Internal data: $\psi_{\omega} = |u_{\omega}|^2 \nabla \varepsilon$ \blacktriangleright Linearised problem:

 $D\psi_{\omega}[\varepsilon](\rho) \mapsto \rho$

In order to have well-posedness of the linearised inverse problem we need

$$
\sum_{\omega \in K} \|D\psi_{\omega}[\varepsilon](\rho)\| \ge C_K \|\rho\|, \qquad \rho \in H^1(\Omega),
$$

or equivalently $\bigcap_{\omega \in K} \ker D\psi_\omega[\varepsilon] = \{0\}.$

Theorem (Alberti, Ammari, Ruan, 2014) This holds true with a priori determined frequencies K and stability constant C_K .

Numerical experiments

Numerical experiments

(c) $K = \{20\}$ (d) $K = \{10, 15, 20\}$

Outline of the talk

[The conductivity equation](#page-12-0)

[The Helmholtz equation](#page-31-0)

³ [The Maxwell's equations](#page-75-0)

^I MREIT [Seo et al., 2012, Bal and Guo, 2013]

$$
\begin{cases}\n\operatorname{curl} E^i = \mathrm{i} \omega H^i & \text{in } \Omega, \\
\operatorname{curl} H^i = -\mathrm{i} (\omega \varepsilon + \mathrm{i} \sigma) E^i & \text{in } \Omega, \\
E^i \times \nu = \varphi_i \times \nu & \text{on } \partial \Omega.\n\end{cases}
$$

$$
H^i(x) \qquad \xrightarrow{?} \quad \varepsilon, \sigma
$$

 \triangleright The relevant constraint in this case is

$$
|\det [E^1(x) \quad E^2(x) \quad E^3(x)]| > 0.
$$

GO solutions may be used [Chen Yang, IP 2013].

- \triangleright The multi-frequency method discussed above works as well [GSA, JDE 2015].
- In both cases, the regularity of the solutions is a fundamental ingredient.

^I MREIT [Seo et al., 2012, Bal and Guo, 2013]

$$
\begin{cases}\n\operatorname{curl} E^i = \mathrm{i} \omega H^i & \text{in } \Omega, \\
\operatorname{curl} H^i = -\mathrm{i} (\omega \varepsilon + \mathrm{i} \sigma) E^i & \text{in } \Omega, \\
E^i \times \nu = \varphi_i \times \nu & \text{on } \partial \Omega.\n\end{cases}
$$

$$
H^i(x) \qquad \xrightarrow{?} \quad \varepsilon, \sigma
$$

$$
|\det [E^1(x) \quad E^2(x) \quad E^3(x)]| > 0.
$$

- GO solutions may be used [Chen Yang, IP 2013].
- \triangleright The multi-frequency method discussed above works as well [GSA, JDE 2015].
- In both cases, the regularity of the solutions is a fundamental ingredient.

^I MREIT [Seo et al., 2012, Bal and Guo, 2013]

$$
\begin{cases}\n\operatorname{curl} E^i = \mathrm{i} \omega H^i & \text{in } \Omega, \\
\operatorname{curl} H^i = -\mathrm{i} (\omega \varepsilon + \mathrm{i} \sigma) E^i & \text{in } \Omega, \\
E^i \times \nu = \varphi_i \times \nu & \text{on } \partial \Omega.\n\end{cases}
$$

$$
H^i(x) \qquad \xrightarrow{?} \quad \varepsilon, \sigma
$$

$$
|\det [E^1(x) \quad E^2(x) \quad E^3(x)]| > 0.
$$

- ▶ CGO solutions may be used [Chen Yang, IP 2013].
- \triangleright The multi-frequency method discussed above works as well [GSA, JDE 2015].
- In both cases, the regularity of the solutions is a fundamental ingredient.

MREIT [Seo et al., 2012, Bal and Guo, 2013]

$$
\begin{cases}\n\operatorname{curl} E^i = \mathrm{i} \omega H^i & \text{in } \Omega, \\
\operatorname{curl} H^i = -\mathrm{i} (\omega \varepsilon + \mathrm{i} \sigma) E^i & \text{in } \Omega, \\
E^i \times \nu = \varphi_i \times \nu & \text{on } \partial \Omega.\n\end{cases}
$$

$$
H^i(x) \qquad \xrightarrow{?} \quad \varepsilon, \sigma
$$

$$
|\det [E^1(x) \quad E^2(x) \quad E^3(x)]| > 0.
$$

- ▶ CGO solutions may be used [Chen Yang, IP 2013].
- \triangleright The multi-frequency method discussed above works as well [GSA, JDE 2015].
- In both cases, the regularity of the solutions is a fundamental ingredient.

MREIT [Seo et al., 2012, Bal and Guo, 2013]

$$
\begin{cases}\n\operatorname{curl} E^i = \mathrm{i} \omega H^i & \text{in } \Omega, \\
\operatorname{curl} H^i = -\mathrm{i} (\omega \varepsilon + \mathrm{i} \sigma) E^i & \text{in } \Omega, \\
E^i \times \nu = \varphi_i \times \nu & \text{on } \partial \Omega.\n\end{cases}
$$

$$
H^i(x) \qquad \xrightarrow{?} \quad \varepsilon, \sigma
$$

$$
|\det [E^1(x) \quad E^2(x) \quad E^3(x)]| > 0.
$$

- ▶ CGO solutions may be used [Chen Yang, IP 2013].
- \triangleright The multi-frequency method discussed above works as well [GSA, JDE 2015].
- In both cases, the regularity of the solutions is a fundamental ingredient.

Regularity for Maxwell's equations

Theorem (GSA, 2016)

Assume that

$$
\varepsilon, \mu \in C^{0,\alpha}(\overline{\Omega}; \mathbb{C}^{3\times 3}), \qquad ||(\mu, \varepsilon)||_{C^{0,\alpha}} \leq \Lambda
$$

and that are uniformly elliptic (constant Λ). Take $J_e, J_m \in C^{0,\alpha}(\overline{\Omega}; \mathbb{C}^3)$ and $G \in C^{1,\alpha}(\text{curl},\Omega)$. Let $(E,H) \in H(\text{curl},\Omega)^2$ be a weak solution of

$$
\begin{cases}\n\text{curl}H = \text{i}\omega \varepsilon E + J_e & \text{in } \Omega, \\
\text{curl}E = -\text{i}\omega \mu H + J_m & \text{in } \Omega, \\
E \times \nu = G \times \nu & \text{on } \partial\Omega,\n\end{cases}
$$

Then $E, H \in C^{0,\alpha}(\overline{\Omega}; \mathbb{C}^3)$ and

 $||(E,H)||_{C^{0,\alpha}} \leq C(||(E,H)||_{L^2(\Omega;\mathbb{C}^3)^2} + ||G||_{C^{1,\alpha}(\text{curl},\Omega)} + ||(J_e,J_m)||_{C^{0,\alpha}(\overline{\Omega};\mathbb{C}^3)^2})$

for some constant C depending only on Ω , Λ and ω .

Take-home message: regularity for Maxwell is exactly as in the elliptic case!

Regularity for Maxwell's equations

Theorem (GSA, 2016)

Assume that

$$
\varepsilon, \mu \in C^{0,\alpha}(\overline{\Omega}; \mathbb{C}^{3\times 3}), \qquad ||(\mu, \varepsilon)||_{C^{0,\alpha}} \leq \Lambda
$$

and that are uniformly elliptic (constant Λ). Take $J_e, J_m \in C^{0,\alpha}(\overline{\Omega}; \mathbb{C}^3)$ and $G \in C^{1,\alpha}(\text{curl},\Omega)$. Let $(E,H) \in H(\text{curl},\Omega)^2$ be a weak solution of

$$
\begin{cases}\n\text{curl}H = \text{i}\omega \varepsilon E + J_e & \text{in } \Omega, \\
\text{curl}E = -\text{i}\omega \mu H + J_m & \text{in } \Omega, \\
E \times \nu = G \times \nu & \text{on } \partial\Omega,\n\end{cases}
$$

Then $E, H \in C^{0,\alpha}(\overline{\Omega}; \mathbb{C}^3)$ and

 $||(E,H)||_{C^{0,\alpha}} \leq C(||(E,H)||_{L^2(\Omega;\mathbb{C}^3)^2} + ||G||_{C^{1,\alpha}(\text{curl},\Omega)} + ||(J_e,J_m)||_{C^{0,\alpha}(\overline{\Omega};\mathbb{C}^3)^2})$

for some constant C depending only on Ω , Λ and ω .

Take-home message: regularity for Maxwell is exactly as in the elliptic case!

Conclusions

 \blacktriangleright The inversion in quantitative hybrid imaging often requires the solutions to the direct problem to satisfy certain non-zero constraints.

- \blacktriangleright It is in general difficult to enforce these constraints a priori (independently of the unknown coefficients), but certain techniques are available:
	- \triangleright The Radó-Kneser-Choquet theorem and its generalizations (only in 2D, counterexamples in 3D)
	- \triangleright CGO solutions
	- \triangleright The Runge approximation
	- \triangleright The multi-frequency approach
- \triangleright Are these constraints *generically* satisfied for a fixed number of boundary conditions?

Conclusions

- \triangleright The inversion in quantitative hybrid imaging often requires the solutions to the direct problem to satisfy certain non-zero constraints.
- \triangleright It is in general difficult to enforce these constraints a priori (independently of the unknown coefficients), but certain techniques are available:
	- \triangleright The Radó-Kneser-Choquet theorem and its generalizations (only in 2D, counterexamples in 3D)
	- \triangleright CGO solutions
	- \blacktriangleright The Runge approximation
	- \blacktriangleright The multi-frequency approach
- Are these constraints generically satisfied for a fixed number of boundary conditions?

Conclusions

- \triangleright The inversion in quantitative hybrid imaging often requires the solutions to the direct problem to satisfy certain non-zero constraints.
- \blacktriangleright It is in general difficult to enforce these constraints a priori (independently of the unknown coefficients), but certain techniques are available:
	- \triangleright The Radó-Kneser-Choquet theorem and its generalizations (only in 2D, counterexamples in 3D)
	- \triangleright CGO solutions
	- \blacktriangleright The Runge approximation
	- \blacktriangleright The multi-frequency approach
- \triangleright Are these constraints *generically* satisfied for a fixed number of boundary conditions?