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From ultrasonography to ultrafast ultrasonography
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Errico et. al, Nature 527, 499-502, 2015
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Conventional ultrasonography

Conventional ultrasound imaging:

focused ultrasonic waves
high spatial resolution

long acquisition time

vV vVv.v Yy

very low contrast: soft biological
tissues are almost acoustically
homogeneous, due to the high
water concentration

> fine details (such as blood vessels)
are completely invisible
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Ultrafast ultrasound imaging

» Use of plane waves instead of focused waves
» High frame rate: up to 20,000 frames per second
> Lots of data to post-process: we focus on blood flow imaging

Demené et al., IEEE Trans Med Imaging, 2015. Errico et. al, Nature, 2015

Single frame of l_JItrafast Poyver dc.>ppler image Superresolution: 75,000 frames
ultrasound brain of a obtained via a SVD filter ith blinki icrobubbl
thinned skull rat applied to 250 frames. wi inking microbubbles
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Blood flow imaging

» The main issue is the removal of the clutter signal
(the scattering coming from the tissue)

» Ultrafast ultrasonography allows us to overcome
this issue, thanks to the very high frame rate.
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Blood flow imaging

» The main issue is the removal of the clutter signal
(the scattering coming from the tissue)

» Ultrafast ultrasonography allows us to overcome
this issue, thanks to the very high frame rate.

> Idea: blood moves, tissue does not (in general).

» Temporal filters (Bercoff et al., 2011): high-pass
filtering the data to remove clutter signals.
Drawback: not applicable when the clutter and
blood velocities are close.
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Blood flow imaging

» The main issue is the removal of the clutter signal
(the scattering coming from the tissue)

» Ultrafast ultrasonography allows us to overcome
this issue, thanks to the very high frame rate.
> Idea: blood moves, tissue does not (in general).

» Temporal filters (Bercoff et al., 2011): high-pass
filtering the data to remove clutter signals.
Drawback: not applicable when the clutter and
blood velocities are close.

> Idea: tissue movement is spatially coherent, while
blood flow is not.

» Spatiotemporal method based on the SVD of the

W Wi

\ & T _ data (Demene et al., 2015): exploits the different
spatial coherence of the clutter and blood
scatterers.
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The static direct problem

Y

Receptor array ¢

,-” Imaging plane

The imaging system

15 A 05 0 05 1 15
Time (s) %108

The pulse f(t) = e2™0tx (vot)

> Incident field in the direction ky = (sin 6, cos ):
ui(:r’ay7zat) = AZ(y)f (t - Calke : ('T’? Z))
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The static direct problem

Y

Receptor array ¢

,-” Imaging plane

Time (s) %108

The imaging system The pulse f(t) = e2™0tx (vot)
> Incident field in the direction ky = (sin 6, cos ):
ui(:r’ay7zat) = AZ(y)f (t - Calke : ('T’? Z))

> ¢o : background speed of sound. ¢(x): speed of sound. Perturbation:
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The static direct problem

i ‘ \\

Receptor array ¢

,-” Imaging plane

Time (s) %108

The imaging system The pulse f(t) = e2™0tx (vot)

> Incident field in the direction ky = (sin 6, cos ):
ui(:r’ay7zat) = AZ(y)f (t - Calke : ('T’? Z))
> ¢o : background speed of sound. ¢(x): speed of sound. Perturbation:
1 1
e E
» In the Born approximation, the scattered field takes the form:

u® (ug,t) = —/R (47")7_1/ £ (t _ X kpt[ug— X/|) n(x')dx', up=(u,0)

2|ll0—X| Co
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The static inverse problem: beamforming
» Scattered field
u® (llo,t), 110:(%0)7 t>0

» Travel time from the receptor array T" to a
point x and back to a receptor in ug:

Te(u) = g ' (ko - x + [x — ug|)
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The static inverse problem: beamforming
» Scattered field
u® (llo,t), 110:(“,0)7 t>0

» Travel time from the receptor array T" to a
point x and back to a receptor in ug:

Te(u) = g ' (ko - x + [x — ug|)

» Beamforming: averaging the signals

z+Fz
z so(x,2) := / u® (uO,Ti (u)) du
z—Fz
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The static inverse problem: beamforming
» Scattered field
u® (ug,t), uy = (u,0), t >0

» Travel time from the receptor array T" to a
point x and back to a receptor in ug:

Te(u) = g ' (ko - x + [x — ug|)

» Beamforming: averaging the signals

z+Fz
z so(x,2) := / u® (uO,T,‘Z (u)) du
z—Fz

Inserting the expression for u* obtained before we obtain

_ %' erFZ_ (47T)_1 "(._0 _ 0 <
o) = [ ) [ T (el ) = ok ) dud

=go(x,x’)
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The static inverse problem: the point spread function

» The static image sy may be rewritten as
sp(x) = / go (x,x")n (x') dx/,
x’/€R?

where gy is the point spread function of the system:

x+Fz T -1
i) == [ g ) - )

—Fz |XI - 110|
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The static inverse problem: the point spread function

» The static image sy may be rewritten as
sp(x) = / go (x,x")n (x') dx/,
x’/€R?

where gy is the point spread function of the system:

x+Fz 47T -1
g0 (x, %) = —/_F ﬁf” (2 (w) = 70 (w)) du

» The PSF may be approximated with a convolution
go(x,x") = gog(x — x'), S = Jo * M,
where (fo = vocy* and ¥ = 2mix + x')

Go(x) = —ivg F X (2f0z) el™ifoz 2mifob gine(27 fo Fix)
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The point spread function

In the particular case 6 = 0:
Go(x) = =g F X (2f0z) €*™o% sinc(27 fo Fir)

%10

x10™

The real part of the PSF gg

o & A O N KM O ®

o & A H ON R O ®

The real part of the PSF go

(The size of the square is 2mm x 2mm, and the horizontal and vertical axes are
the  and z axes.)
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Angle compounding

> In order to improve the decay in the x direction, (Montaldo et al., 2009)
introduced angle compounding:

1 [® 1 /9
s (x) = %/639()() do, 95 (%) = %/@gg(x) do

x10"®
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Angle compounding

> In order to improve the decay in the x direction, (Montaldo et al
introduced angle compounding:

1 [® 1 /9
s (x) = %/639@) do, 95 (%) = %/@gg(x) do

» A simple derivation shows that the PSF is

., 2009)

9% (x) = go(x) sinc(2mvpc, 'O)
> © = 0: we recover jg for § = 0.
» © > 0: this PSF enjoys faster decay in the variable z.

x10™

%10"®

) 96,0 =0

S & A O N B O ®

b b A O NS O ®

(d) g5, © =025
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The dynamic forward problem

» The dynamic imaging setup consists in the repetition of the static imaging
method over time to acquire a collection of images of a medium in motion.
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The dynamic forward problem

» The dynamic imaging setup consists in the repetition of the static imaging
method over time to acquire a collection of images of a medium in motion.

» Quasistatic model: the whole process of obtaining one image is fast enough
to consider the medium static, but collecting several images over time gives
us a movie of the movement over time.
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The dynamic forward problem

» The dynamic imaging setup consists in the repetition of the static imaging
method over time to acquire a collection of images of a medium in motion.

» Quasistatic model: the whole process of obtaining one image is fast enough
to consider the medium static, but collecting several images over time gives
us a movie of the movement over time.

> There are two time scales: the fast one related to the propagation of the
wave is considered instantaneous with respect to the slow one, related to the
sequence of the images.
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The dynamic forward problem

» The dynamic imaging setup consists in the repetition of the static imaging
method over time to acquire a collection of images of a medium in motion.

» Quasistatic model: the whole process of obtaining one image is fast enough
to consider the medium static, but collecting several images over time gives
us a movie of the movement over time.

> There are two time scales: the fast one related to the propagation of the
wave is considered instantaneous with respect to the slow one, related to the
sequence of the images.

» We now neglect the time of the propagation of a single wave to obtain static
imaging. The time ¢ considered here is related to the slow time scale.

> At fixed time ¢, we obtain a static image of the medium n = n(x,t):

s(x,1) = (98 * (-, 1)) (x).
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The dynamic inverse problem: Source separation

> Repeating the process for ¢ € [0, T] we obtain the movie s(x,t), which
represents the main data we now need to process.

» Main aim: locating the (possibly very small) blood vessels.

> Main issue: s(x,t) is highly corrupted by clutter signal, namely, the signal
scattered from tissues.

» Decompose
n(x,t) = ne(x,t) + np(x,t)

» The measurements are
s(x,t) = se(x,t) + sp(x,t)

» Inverse problem: determine the spatial support of ny.

Giovanni S Alberti (University of Genoa) Ultrafast ultrasound imaging AIPC 2017, May 30 12 / 24



A general multiple scatterer random model

» Consider N point particles, with positions

a(t), k=1,...,N.

> ay: i.i.d. stochastic processes
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A general multiple scatterer random model
» Consider N point particles, with positions
a(t), k=1,...,N.
> ay: i.i.d. stochastic processes

» The medium and the measurements are given by

x—ak

HMZ

n (x,t) \/_ Z6ak(t)

» C > 0: scattering intensity

1 - -
> & natural normalization factor (central limit theorem)
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A general multiple scatterer random model

» Consider N point particles, with positions

a(t), k=1,...,N.

v

ay: 1.i.d. stochastic processes

v

The medium and the measurements are given by

x—ak

HMZ

n (x,t) \/_ Z(Sak(t)

» C > 0: scattering intensity

1 - -
> & natural normalization factor (central limit theorem)

(Xi)iz1,. e (ti)j=1._m,: sampling locations and times.

Casorati matrix Sy € C™=>xmt;

v

v

SN (i, 7) = s(xi, ).
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A general multiple scatterer random model
» Consider N point particles, with positions
a(t), k=1,...,N.

> ay: i.i.d. stochastic processes
» The medium and the measurements are given by

N
ﬁ kz_;l 6ak (t) (X)

» C > 0: scattering intensity

1 - -
> & natural normalization factor (central limit theorem)

> (Xi)iz1,myr (8) =1 .m,: Sampling locations and times.

x—ak

HMZ

» Casorati matrix Sy € C™x*mt;
SN(Za.]) = S(Xia t])

» Multivariate central limit theorem: Sy converges in distribution to a
Gaussian complex matrix S € C"=*"+
» The distribution of S is entirely determined by g and the law of ay,
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The SVD separation algorithm (pemené et al., 2015)

» Casorati matrix S € C™=*™t (m; < my):

» The singular value decomposition of S

S(i,7) = Zakuk(i)@k(j)
k=1

» singular vectors: (u1, ..., Um,) and (v1, ..., Um,) are ONB of C™= and C™¢

> singular values: 01 > 02 > ... > 0, >0

» the dynamic data S are expressed as a sum of spatial components u; moving
with time profiles vy, with weights oy.
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The SVD separation algorithm (pemené et al., 2015)
> Casorati matrix S € C™=*"™t (m; < my):

» The singular value decomposition of S
S(i,3) =Y orun(i)vk(5)
k=1

» singular vectors: (u1, ..., Um,) and (v1, ..., Um,) are ONB of C™= and C™¢

> singular values: 01 > 02 > ... > 0pm, >0

» the dynamic data S are expressed as a sum of spatial components u; moving
with time profiles vy, with weights oy.

> Since the tissue movement has higher spatial coherence than the blood flow,
the first factors are expected to contain the clutter signal, and the remainder
to provide information about the blood location
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The SVD separation algorithm (pemené et al., 2015)

» Casorati matrix S € C™=*™t (m; < my):

» The singular value decomposition of S
S(i,3) =Y orun(i)vk(5)
k=1

» singular vectors: (u1, ..., Um,) and (v1, ..., Um,) are ONB of C™= and C™¢
> singular values: 01 > 02 > ... > 0pm, >0
» the dynamic data S are expressed as a sum of spatial components u; moving
with time profiles vy, with weights oy.
> Since the tissue movement has higher spatial coherence than the blood flow,
the first factors are expected to contain the clutter signal, and the remainder
to provide information about the blood location
> The blood location may be recovered by looking at the “power Doppler”

me

‘SA’b,K (Z) = Z o—l%|uk|2(i)a (S {]-a ~'~amx}'

k=K+1
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Justification of the SVD method (1D)

» Using the multiple scatterer random model introduced above, we construct
two Casorati matrices
Sb7 SC

as limits of particles with the following statistics.
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Justification of the SVD method (1D)

» Using the multiple scatterer random model introduced above, we construct

two Casorati matrices
Sb7 SC

as limits of particles with the following statistics.

» Clutter: large support, constant velocities

ar(t) = up + vt

where wy, is uniformly distributed in (0, L.).
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Justification of the SVD method (1D)

» Using the multiple scatterer random model introduced above, we construct

two Casorati matrices
Sb7 SC

as limits of particles with the following statistics.
» Clutter: large support, constant velocities

ar(t) = up + vt

where wy, is uniformly distributed in (0, L.).

» Blood: small support, varying velocities:

ar(t) = uk +vpt + 0By

where uy, is uniformly distributed in (0, Ly) (Ly < L.) and By is a Brownian
motion.
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Justification of the SVD method (1D)

» Using the multiple scatterer random model introduced above, we construct
two Casorati matrices
Sb7 SC

as limits of particles with the following statistics.
» Clutter: large support, constant velocities

ap(t) = uk + vt
where uy, is uniformly distributed in (0, L.).
» Blood: small support, varying velocities:
ar(t) = uk +vpt + 0By

where uy, is uniformly distributed in (0, Ly) (Ly < L.) and By is a Brownian
motion.

> Sy and S, may be constructed using the Gaussian limit approximation
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Justification of the SVD method (1D)

14 4
15 <10 . . . . 25 <10 . . . .
Clutter Clutter (0.5 cm.s™')
— — — Blood H — — — Clutter (1 cm.s™")
Noise Clutter (2 em.s™!)
10 6 8 10
%104 %104
(a) The clutter model (ve = 1072m-s~ 1),  (b) The clutter model with different
the blood model (62 = 10~6 m?s~1, velocities.

vp = 1072 m-s~1) and a white noise model
with same variance as the blood.

Figure: The distribution of the singular values of the Casorati matrix S in different cases.
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Numerical simulations
We put one blood vessel in a moving tissue:
» domain: 5mm X 5mm
» '=04and © = 7°.
» The density of particles for both blood and clutter is 2,000 per mm
> Cc =5C}
A single frame of the measurements s(x, ty) is

2

%103 %10

Need further processing to locate the blood vessel!
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Numerical simulations: v, > v,
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(a) Maximum blood velocity: 2cm-s~
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Numerical simulations: v, = v,

1

08 30 10 20

0.6 Clutter
20 \ — — Blood

0.4 AN -------- Both
10 S~

0.2 1015

0 20 40
0 0
-2 0 2 -2 0 2

1

038 30 10%°

0.6 Clutter
2 — — Blood

0.4 -------- Both
10

0.2 10 15

0 20 40
0 0
-2 0 2 -2 0 2

(b) Maximum blood velocity: 1cm-s~ L

1: mean clutter velocity: 1cm-s~
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Numerical simulations: v, < v,
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(c) Maximum blood velocity: 0.5cm-s~
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Numerical simulations: the flow direction

x101°

5 I I I I
0 0.02 0.04 0.06 0.08 0.1

(a) Flow parallel to the receptor array.

1 I I I I
0 0.02 0.04 0.06 0.08 0.1

(b) Flow perpendicular to the receptor array.

Figure: Time behavior of a single pixel (real part), located in a constant velocity flow.
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Numerical simulations: robustness to noise

» Independent white Gaussian noise
> contrast: ratio between the mean intensity of the reconstructed image inside
and outside the blood domain.

» C.=5C},: a noise intensity of 10% corresponds to half the intensity of blood

4.5 T T T

N oriented along x
4+ \ — — oriented along z i

contrast
/

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
noise level
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Superresolution with ultrafast ultrasound

500 um

Velocity (mm s7)
-14 -10 -5 0 5 10 14

Errico et. al, Nature 527, 499-502, 2015

Giovanni S Alberti (University of Genoa) Ultrafast ultrasound imaging AIPC 2017, May 30 23 /24



Superresolution: ongoing work

Current method

Errico et. al, Nature 527, 499-502, 2015
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» a— b: SVD

» b — c: identify center of
PSF, if well-separated

» Track bubbles to obtain
velocities

» Drawbacks:

> slow
» discard a lot of data



Superresolution: ongoing work

Current method
» a— b: SVD

» b — c: identify center of
PSF, if well-separated

» Track bubbles to obtain
velocities
» Drawbacks:

> slow
» discard a lot of data

New method

» dynamic superresolution in
time and space

» based on ¢! minimization

» obtain locations and

Errico et. al, Nature 527, 499-502, 2015 .
velocities in one step
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