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Problem formulation

Time-harmonic Maxwell’s equations curlH = −i(ωε+ iσ)E + Je in Ω,
curlE = iωµH + Jm in Ω,
E × ν = 0 on ∂Ω,

with
E,H ∈ H(curl,Ω) = {F ∈ L2(Ω;C3) : curlF ∈ L2(Ω;C3)}.

Main regularity questions:
I E,H ∈ H1

I E,H ∈ C0,α

I E,H ∈ Hk , E,H ∈ Ck,α
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Interior regularity

We consider the regularity of the solutions

E,H ∈ H(curl,Ω)

to

curlH = −i

γ︷ ︸︸ ︷
(ωε+ iσ)E + Je in Ω,

curlE = iωµH + Jm in Ω,

in a compact set
K b Ω.
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Warm up

Let’s consider the limit ω → 0:{
curlE = iωµH
curlH = −i(ωε+ iσ)E + Je

=⇒
{

curlE = 0
curlH = σE + Je

Writing E = ∇qE , this yields the conductivity equation for the electric potential qE

−div(σ∇qE) = div Je

Elliptic regularity:
I σ ∈W 1,3 =⇒ qE ∈ H2 =⇒ E ∈ H1

I σ ∈ C0,α =⇒ qE ∈ C1,α =⇒ E ∈ C0,α

I Higher regularity
I . . .
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Warm up 2

Let’s study H1 regularity in homogeneous isotropic media:{
curlH = −iγ0E + Je in Ω,
curlE = iωµ0H + Jm in Ω.

with sources

Je, Jm ∈ H(div,Ω) = {F ∈ L2(Ω;C3) : divF ∈ L2(Ω;C3)}.

Key observation: {
divE = −iγ−1

0 div Je ∈ L2(Ω)
curlE = iωµ0H + Jm ∈ L2(Ω)

?
=⇒ E ∈ H1

loc(Ω)
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Gaffney-Friedrichs Inequality (without boundary)

Theorem
We have

H(curl,Ω) ∩H(div,Ω) ⊆ H1
loc(Ω)

and
‖∇F‖L2(K) . ‖ curlF‖L2(Ω) + ‖ divF‖L2(Ω) + ‖F‖L2(Ω).

Proof.
I Helmholtz decomposition: F = ∇q + curl Φ with div Φ = 0

I By elliptic regularity applied to

−∆Φ = curl curl Φ = curlF

we obtain Φ ∈ H2
loc(Ω), so that

curl Φ ∈ H1
loc(Ω).

I By elliptic regularity applied to

−∆q = −div∇q = −divF

we obtain q ∈ H2
loc(Ω), so that

∇q ∈ H1
loc(Ω).
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Basic assumptions

curlH = −i

γ︷ ︸︸ ︷
(ωε+ iσ)E + Je in Ω,

curlE = iωµH + Jm in Ω,

I frequency ω > 0

I the coefficients ε, σ ∈ L∞
(
Ω;R3×3

)
and µ ∈ L∞

(
Ω;C3×3

)
are elliptic:

Λ−1 |η|2 ≤ ξ · εξ, ξ ∈ R3,

Λ−1 |η|2 ≤ ξ ·
(
µ+ µT

)
ξ, ξ ∈ R3,

I sources Je, Jm ∈ L2(Ω;C3)

9



H1 regularity

{
curlH = −iγE + Je in Ω,
curlE = iωµH + Jm in Ω,

Theorem
If ε, σ, µ ∈W 1,3 and Je, Jm ∈ H(div,Ω) then E,H ∈ H1

loc(Ω).

Proof.
Assume for simplicity ε, µ ∈W 1,∞.
I Helmholtz decomposition: E = ∇qE + curl ΦE , H = ∇qH + curl ΦH

I By elliptic regularity applied to

−∆ΦE = iωµH + Jm
−∆ΦH = −iγE + Je

we obtain ΦE ,ΦH ∈ H2
loc.

I By elliptic regularity applied to

− div (µ∇qH) = div
(
µ curl ΦH − iω−1Jm

)
∈ L2

−div (γ∇qE) = div (γ curl ΦE + iJe) ∈ L2

we obtain qE , qH ∈ H2
loc(Ω).
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C0,α regularity

Theorem
If ε, σ, µ ∈ C0,α and Je, Jm ∈ C0,α with α ∈ (0, 1

2 ], then E,H ∈ C0,α
loc (Ω).

Proof.
The Helmholtz decomposition E = ∇qE + curl ΦE , H = ∇qH + curl ΦH yields

−∆ΦE = iωµH + Jm − div (µ∇qH) = div
(
µ curl ΦH − iω−1Jm

)
−∆ΦH = −iγE + Je − div (γ∇qE) = div (γ curl ΦE + iJe)

I H2 regularity: ΦE ,ΦH ∈ H2 ⊆W 1,6, so that curl ΦE , curl ΦH ∈ L6

I W 1,p regularity: ∇qE ,∇qH ∈ L6, so that E,H ∈ L6

I W 2,p regularity: ΦE ,ΦH ∈W 2,6, so that curl ΦE , curl ΦH ∈W 1,6 ⊆ C0, 12

I Schauder estimates: ∇qE ,∇qH ∈ C0,α, so that E,H ∈ C0,α
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Higher regularity

Higher regularity results
for elliptic equations =⇒ Higher regularity results

for Maxwell’s equations

Theorem
If ε, σ, µ ∈WN,3 and Je, Jm ∈ HN (div,Ω) then E,H ∈ HN

loc(Ω).

Theorem
If ε, σ, µ ∈ CN,α and Je, Jm ∈ CN,α with α ∈ (0, 1

2 ], then E,H ∈ C ,αloc(Ω).
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Elliptic boundary regularity

Key points:

1. Helmholtz decomposition of E and H :

E = ∇qE + curl ΦE , H = ∇qH + curl ΦH

2. Elliptic regularity applied to:

−∆ΦE = iωµH + Jm − div (µ∇qH) = div
(
µ curl ΦH − iω−1Jm

)
−∆ΦH = −iγE + Je − div (γ∇qE) = div (γ curl ΦE + iJe)

So:
I We can use boundary elliptic regularity!
I Need boundary conditions for the potentials ΦE , ΦH , qE and qH :

ΦE · ν = 0, ΦH × ν = 0, qE = 0 on ∂Ω
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Boundary conditions for qE

I Elliptic PDE:
−div (γ∇qE) = div (γ curl ΦE + iJe) in Ω

I The Helmholtz decomposition gives

qE = 0 on ∂Ω

I Dirichlet problem!
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Boundary conditions for qH

I Elliptic PDE:

−div (µ∇qH) = div
(
µ curl ΦH − iω−1Jm

)
in Ω

I From

0 = div(E × ν) = curlE · ν = iωµH · ν + Jm · ν = iωµ∇qH · ν + iωµ curl ΦH · ν + Jm · ν

we obtain
−µ∇qH · ν =

(
µ curl ΦH − iω−1Jm

)
· ν on ∂Ω

I Neumann problem!
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Boundary conditions for ΦE and ΦH

I 6 PDEs:
−∆ΦE = iωµH + Jm, −∆ΦH = −iγE + Je in Ω.

I 3 Boundary conditions:

ΦE · ν = 0, ΦH × ν = 0, on ∂Ω

I What to do?
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The flat case

I Let’s focus on ΦH :

−∆ΦH = −iγE + Je in Ω, ΦH × ν = 0, on ∂Ω.

I Suppose Ω = {x3 < 0}, so that ν = e3. Thus:

ΦH × ν = 0 =⇒ (ΦH)1 = (ΦH)2 = 0

and

div ΦH = 0 =⇒ ∂1(ΦH)1+∂2(ΦH)2+∂3(ΦH)3 = 0 =⇒ ∂3(ΦH)3 = 0 =⇒ ∂ν(ΦH)3 = 0

I Dirichlet and Neumann problems!
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Flattening out the boundary

I Ω is locally defined by
x3 < κ(x1, x2)

I Change of coordinates y = Φ(x):

y1 = x1, y2 = x2, y3 = x3 − κ(x1, x2)
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Piola transformation

I Setting
Ẽ = (Φ′)−TE, γ̃ = Φ′γ(Φ′)T ,

we have  curlE = iωµH + Jm
−div(γE) = div(iJe)
E × ν = 0

∣∣∣∣∣


curl Ẽ = (iωµH + Jm)̃

− div(γ̃Ẽ) = div(iJe)

Ẽ × e3 = 0

I Same equations!
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What regularity is needed?

I New PDEs

curl Ẽ = (iωµH + Jm)̃ , −div(γ̃Ẽ) = div(iJe), Ẽ × e3 = 0

with coefficient
γ̃ = Φ′γ(Φ′)T

I If ∂Ω is of class C1,1, then Φ′ ∈ C0,1 and
– H1 regularity: γ ∈W 1,∞ =⇒ γ̃ ∈W 1,∞

– C0,α regularity: γ ∈ C0,α =⇒ γ̃ ∈ C0,α

I Higher regularity: ∂Ω of class CN,1
I Non-smooth domains: many results (Buffa, Costabel, Dauge, Nicaise . . . )
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Other results

I Regularity only for E or H :

γ ∈ C0,α =⇒ E ∈ C0,α

I W 1,p regularity:
µ, γ ∈W 1,p, p > 3 =⇒ E,H ∈W 1,p

I Meyers theorem:

no additional assumptions =⇒ E,H ∈ L2+δ

I Asymptotic expansions in the presence of small inhomogeneities

23



Maxwell regularity
=

Helmholtz decomposition + elliptic regularity
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