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The Radon transform

Ru(θ, s) =
∫
θ⊥
u(y+ sθ)dy
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The Radon transform1

▶ Domain: B1 = B(0, 1) ⊆ R2

▶ Radon transform at fixed angle θ ∈ S1:

Rθ : L
2(B1)→ L2(−1, 1), Rθu(s) =

∫
θ⊥
u(y+ sθ)dy

▶ Radon transform:

R : L2(B1)→ L2(S1 × [−1, 1]), Ru(θ, s) = Rθu(s)

▶ Ill-posedness/inversion:
∥Ru∥L2 ≍ ∥u∥

H− 1
2

1Natterer, The Mathematics of Computerized Tomography, 2001
Quinto, An Introduction to X-ray tomography and Radon Transforms, 2006 6
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The sparse Radon transform

Rθu(s) =

∫
θ⊥
u(y+ sθ)dy, θ = θ1
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The sparse Radon transform

Rθu(s) =

∫
θ⊥
u(y+ sθ)dy, θ = θ3
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The sparse Radon transform

Rθu(s) =

∫
θ⊥
u(y+ sθ)dy, θ = θ4
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The sparse Radon transform

(
Ru†(θ1, ·), . . . ,Ru†(θm, ·)

)
, θ1, . . . , θm

i.i.d.
∼ ν uniform on S1
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The sparse Radon inverse problem

▶ Data: (
Ru†(θ1, ·), . . . ,Ru†(θm, ·)

)
, θ1, . . . , θm

i.i.d.
∼ ν uniform on S1

▶ Unknown:
u† ∈ L2(B1)

▶ Subsampled measurements =⇒ need a-priori information on u†

▶ Natural assumption: u† is sparse
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(Some) related literature

(
Ru†(θ1, ·), . . . ,Ru†(θm, ·)

)
∈ L2(−1, 1)m −→ u† ∈ L2(B1)

Empirical works:
▶ Siltanen et al, Statistical inversion for medical x-ray tomography with few

radiographs, 2003
▶ Hämäläinen et al, Sparse Tomography, 2013
▶ Jørgensen and Sidky, How little data is enough? Phase-diagram analysis of

sparsity-regularized X-ray computed tomography, 2015
▶ Jørgensen, Coban, Lionheart, McDonald and Withers, SparseBeads data:

benchmarking sparsity-regularized computed tomography, 2017
▶ Bubba and Ratti, Shearlet-based regularization in statistical inverse learning with

an application to x-ray tomography, 2022
Theoretical works:

. . .

9



(Some) related literature

(
Ru†(θ1, ·), . . . ,Ru†(θm, ·)

)
∈ L2(−1, 1)m −→ u† ∈ L2(B1)

Empirical works:
▶ Siltanen et al, Statistical inversion for medical x-ray tomography with few

radiographs, 2003
▶ Hämäläinen et al, Sparse Tomography, 2013
▶ Jørgensen and Sidky, How little data is enough? Phase-diagram analysis of

sparsity-regularized X-ray computed tomography, 2015
▶ Jørgensen, Coban, Lionheart, McDonald and Withers, SparseBeads data:

benchmarking sparsity-regularized computed tomography, 2017
▶ Bubba and Ratti, Shearlet-based regularization in statistical inverse learning with

an application to x-ray tomography, 2022

Theoretical works:
. . .

9



(Some) related literature

(
Ru†(θ1, ·), . . . ,Ru†(θm, ·)

)
∈ L2(−1, 1)m −→ u† ∈ L2(B1)

Empirical works:
▶ Siltanen et al, Statistical inversion for medical x-ray tomography with few

radiographs, 2003
▶ Hämäläinen et al, Sparse Tomography, 2013
▶ Jørgensen and Sidky, How little data is enough? Phase-diagram analysis of

sparsity-regularized X-ray computed tomography, 2015
▶ Jørgensen, Coban, Lionheart, McDonald and Withers, SparseBeads data:

benchmarking sparsity-regularized computed tomography, 2017
▶ Bubba and Ratti, Shearlet-based regularization in statistical inverse learning with

an application to x-ray tomography, 2022
Theoretical works:

. . .

9



A theory of sparse Radon transform?

Main question:

number of measurements (sample complexity) ←→ sparsity of u†

Compressed sensing! But...

▶ From Jørgensen, Coban, Lionheart, McDonald and Withers, 2017:
Compressive sensing connects the critical number of projections to the image
sparsity, but does not cover CT. Empirical results suggest a similar connection.

▶ From Hansen, 2017:
We used simulations studies to provide a foundation for the use of sparsity in CT

where, unlike compressed sensing, it is not possible to give rigorous proofs.
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WARNING

Main result at the end!

SPOILER
m ≳ sparsity
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Compressed sensing2

Setup:
▶ Unknown signal: u† ∈ RM

▶ Forward map: A : RM → Rm linear
▶ (Au)l = ⟨u,ψl⟩, l = 1, . . . ,m
▶ the number of measurements is m ⩽M
▶ example: A = subsampled Fourier transform, ψl = trigonometric polynomials (MRI)

u† Measured frequencies

2E. J. Candès, J. K. Romberg, T. Tao. Stable signal recovery from incomplete and inaccurate measure-
ments. Comm. Pure Appl. Math. 59(8) (2006), 1207-1223
D. L. Donoho. Compressed sensing. IEEE Trans. Inf. Theory, 52(4) (2006), 1289–1306 13
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Sparsity

▶ {ϕn}
M
n=1: orthonormal basis of RM

▶ Φ : RM → RM, (Φu)n := ⟨u,ϕn⟩: analysis operator
▶ If ∥Φu∥0 := #{n ∈ N : (Φu)n ̸= 0}, then

Σs := {u ∈ RM : ∥Φu∥0 ⩽ s} is called the set of s-sparse signals

▶ In practice, compressibility:

u = v+ small, v ∈ Σs.
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Real-world signals are compressible

Figure: Left: original image - Right: image obtained (roughly) by keeping only the 1% largest
coefficients with respect to a discrete wavelet basis (JPEG-2000 compression standard)

15



Recovery estimate3

▶ u† ∈ RM: unknown signal
▶ u† is s-sparse w.r.t. {Φn}n
▶ (Au)l = ⟨u,ψl⟩, l = 1, . . . ,m: subsampled isometry

(e.g.: Fourier =⇒ MRI)
▶ measurements: y = Au†

▶ minimization problem

u∗ ∈ arg min
u∈RM

{∥Φu∥1 : Au = y}

Theorem
If

m ≳ s · log factors

then, with high probability,

u† = u∗

3S. Foucart, H. Rauhut. A mathematical introduction to compressive sensing. 2013. 16
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Back to the sparse Radon transform
(
Ru†(θ1, ·), . . . ,Ru†(θm, ·)

)
∈ L2(−1, 1)m −→ u† ∈ L2(B1)

Main obstacles:
▶ Infinite-dimensional setting:

Grasmair, Scherzer, Haltmeier, Necessary and sufficient conditions for linear
convergence of ℓ1-regularization, 2011

Adcock, Hansen, Generalized Sampling and Infinite-Dimensional CS, 2016
▶ Pointwise values (aka interpolation) vs. scalar products:

Rauhut, Ward, Interpolation via weighted ℓ1 minimization, 2016
▶ Vector-valued measurements?

Check: the whole theory still works

1. Forward map R affects sparsity
2. Ill-posed problem4

4A. Ebner, M. Haltmeier, Convergence rates for the joint solution of inverse problems with compressed
sensing data, 2022 18
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1. Forward map R affects sparsity5

▶ A priori assumption: u† is s-sparse/compressible

▶ Problem: for general F, Fu† might not be s-sparse w.r.t. a reasonable dictionary

▶ Solution: many dictionaries and operators of interest are ‘compatible’

5E. Herrholz, G. Teschke, Compressive sensing principles and iterative sparse recovery for inverse and
ill-posed problems, 2010 19
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1. Forward map R affects sparsity: quasi-diagonalization

▶ For b = 1
2 , the forward map R satisfies

∥Ru∥2 ≍ ∥u∥2H−b , u ∈ L2(B1)

▶ the family (ϕj,n)j,n (e.g.: wavelets) satisfies a Littlewood-Paley property6:∑
j,n

2−2bj|⟨u,ϕj,n⟩|2 ≍ ∥u∥2H−b , u ∈ L2(B1)

▶ Then we have a quasi-diagonalization property:

∥Ru∥2 ≍
∑
j,n

2−2bj|⟨u,ϕj,n⟩|2

▶ R is comparable to the action of a diagonal operator on the coefficients Φu
▶ Information on sparsity of u† ⇒ information on Ru†

6S. Mallat. A Wavelet Tour of Signal Processing. The Sparse Way, 2009 20
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2. Ill-posed problem: g-RIP

▶ Classical CS: Restricted Isometry Property (RIP)

(1 − δ)∥u∥2 ⩽ ∥Au∥22 ⩽ (1 + δ)∥u∥2, u ∈ Σs

for m sufficiently large.

▶ Our setting: generalized RIP (g-RIP)7

(1 − δ)
(
∥Gu∥2 + α2∥u∥2

)
⩽ ∥Au∥2 + α2∥u∥2 ⩽ (1 + δ)

(
∥Gu∥2 + α2∥u∥2

)
, u ∈ Σs

where
– G :=

√
PMR∗RιM encodes properties of the truncated forward map R

– α ⩾ 0 is a regularization parameter (elastic net)

7B. Adcock, V. Antun, A. C. Hansen. Uniform recovery in infinite-dimensional compressed sensing and
applications to structured binary sampling. Appl. Comput. Harmon. Anal. (2021). 21
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Main result

(
Ru†(θ1, ·), . . . ,Ru†(θm, ·)

)
∈ L2(−1, 1)m −→ u† ∈ L2(B1)

Theorem (A, Felisi, Santacesaria, Trapasso)
▶ Unknown: u† ∈ L2(B1)

▶ Sparsity: u† is s-sparse wrt an ONB of wavelets (ϕj,n)j,n
▶ Measurements: θ1, . . . , θm ∈ [0,π] chosen uniformly at random with

m ≳ s · log factors

▶ Minimization problem:

u∗ ∈ arg min
u
∥Φu∥1 subject to Rθl

u = Rθl
u†, l = 1, . . . ,m

Then, with high probability,
u∗ = u†

22
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A few comments

▶ This theorem is a particular case of an abstract result dealing with:
– compressed sensing and interpolation simultaneously
– Hilbert space-valued measurements
– ill-posed inverse problems

▶ Explicit estimates with
– noisy data
– compressible (and not sparse) u†

– regularization with sampling: m = m(noise)
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Conclusions

Past
▶ Rigorous theory of compressed sensing for subsampled isometries (e.g. MRI)
▶ Empirical evidence for compressed sensing Radon transform

Present
▶ Rigorous theory of compressed sensing for the sparse Radon transform
▶ Abstract theory of sample complexity

Future
▶ Fan-beam geometry
▶ Wavelets → shearlets, curvelets, etc.
▶ Generalisation to other ill-posed problems
▶ Nonlinear problems
▶ Compressed sensing with generative models
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