

Compressed sensing for the sparse Radon transform

Giovanni S. Alberti

MaLGa – Machine Learning Genoa Center Department of Mathematics University of Genoa

Joint work with

Alessandro Felisi (UniGe)

Matteo Santacesaria (UniGe)

S. Ivan Trapasso (PoliTo)

[Compressed sensing](#page-29-0)

[Compressed sensing for the sparse Radon transform](#page-54-0)

[Compressed sensing](#page-29-0)

[Compressed sensing for the sparse Radon transform](#page-54-0)

$$
\mathfrak{R}u(\theta,s)=\int_{\theta^\perp}u(y+s\theta)dy
$$

▶ Domain: $B_1 = B(0, 1) \subseteq \mathbb{R}^2$

- ▶ Domain: $B_1 = B(0, 1) \subseteq \mathbb{R}^2$
- ▶ Radon transform at fixed angle $θ ∈ ℑ¹$:

$$
\mathfrak{R}_{\theta} \colon L^2(\mathfrak{B}_1) \to L^2(-1,1), \qquad \mathfrak{R}_{\theta} u(s) = \int_{\theta^{\perp}} u(y+s\theta) dy
$$

- ▶ Domain: $B_1 = B(0, 1) \subseteq \mathbb{R}^2$
- ▶ Radon transform at fixed angle $θ ∈ ℑ¹$:

$$
\mathfrak{R}_\theta\colon L^2(\mathfrak{B}_1)\to L^2(-1,1),\qquad \mathfrak{R}_\theta u(s)=\int_{\theta^\perp}u(y+s\theta)dy
$$

▶ Radon transform:

$$
\mathfrak{R}\colon L^2(\mathfrak{B}_1)\to L^2(\mathbb{S}^1\times[-1,1]),\qquad \mathfrak{R} u(\theta,s)=\mathfrak{R}_{\theta} u(s)
$$

- ▶ Domain: $B_1 = B(0, 1) \subseteq \mathbb{R}^2$
- ▶ Radon transform at fixed angle $θ ∈ ℑ¹$:

$$
\mathfrak{R}_{\theta} \colon L^2(\mathfrak{B}_1) \to L^2(-1,1), \qquad \mathfrak{R}_{\theta} u(s) = \int_{\theta^{\perp}} u(y+s\theta) dy
$$

▶ Radon transform:

UniGe

$$
\mathfrak{R}\colon L^2(\mathfrak{B}_1)\to L^2(\mathbb{S}^1\times[-1,1]),\qquad \mathfrak{R} u(\theta,s)=\mathfrak{R}_{\theta} u(s)
$$

▶ Ill-posedness/inversion:

$$
\|\mathfrak{R} u\|_{L^2}\asymp \|u\|_{H^{-\frac{1}{2}}}
$$

$$
\mathfrak{R}_{\theta}u(s)=\int_{\theta^{\perp}}u(y+s\theta)\text{d}y,\qquad\theta=\theta_1
$$

$$
\mathfrak{R}_{\theta}u(s)=\int_{\theta^{\perp}}u(y+s\theta)dy, \qquad \theta=\theta_2
$$

$$
\mathfrak{R}_{\theta}u(s)=\int_{\theta^{\perp}}u(y+s\theta)dy, \qquad \theta=\theta_3
$$

$$
\mathfrak{R}_{\theta}u(s)=\int_{\theta^{\perp}}u(y+s\theta)dy,\qquad \theta=\theta_4
$$

$$
\left(\mathcal{R}u^{\dagger}(\theta_1,\cdot),\ldots,\mathcal{R}u^{\dagger}(\theta_m,\cdot)\right),\quad \theta_1,\ldots,\theta_m\stackrel{\text{i.i.d.}}{\sim}\nu\text{ uniform on }\mathbb{S}^1
$$

▶ Data:

$$
\left(\mathcal{R}u^{\dagger}(\theta_1,\cdot),\ldots,\mathcal{R}u^{\dagger}(\theta_m,\cdot)\right),\quad \theta_1,\ldots,\theta_m\stackrel{\text{i.i.d.}}{\sim} \nu \text{ uniform on }\mathbb{S}^1
$$

▶ Data:

$$
\left(\mathcal{R}u^{\dagger}(\theta_1,\cdot),\ldots,\mathcal{R}u^{\dagger}(\theta_m,\cdot)\right),\quad \theta_1,\ldots,\theta_m\stackrel{\text{i.i.d.}}{\sim}\nu \text{ uniform on }\mathbb{S}^1
$$

▶ Unknown:

 $\mathfrak{u}^\dagger \in \text{L}^2(\mathcal{B}_1)$

▶ Data:

$$
(\mathcal{R}u^{\dagger}(\theta_1,\cdot),\ldots,\mathcal{R}u^{\dagger}(\theta_m,\cdot)), \quad \theta_1,\ldots,\theta_m \stackrel{\text{i.i.d.}}{\sim} \nu \text{ uniform on } \mathbb{S}^1
$$

▶ Unknown:

 $\mathfrak{u}^\dagger \in \text{L}^2(\mathcal{B}_1)$

▶ Subsampled measurements $\quad\Longrightarrow\quad$ need a-priori information on \mathfrak{u}^\dagger

▶ Data:

$$
(\mathcal{R}u^{\dagger}(\theta_1,\cdot),\ldots,\mathcal{R}u^{\dagger}(\theta_m,\cdot)), \quad \theta_1,\ldots,\theta_m \stackrel{\text{i.i.d.}}{\sim} \nu \text{ uniform on } \mathbb{S}^1
$$

 \blacktriangleright Unknown:

$$
u^\dagger\in L^2(\mathcal{B}_1)
$$

- ▶ Subsampled measurements $\quad\Longrightarrow\quad$ need a-priori information on \mathfrak{u}^\dagger
- \blacktriangleright Natural assumption: u^{\dagger} is sparse

(Some) related literature

$$
\left(\mathfrak{R}u^\dagger(\theta_1,\cdot),\ldots,\mathfrak{R}u^\dagger(\theta_m,\cdot)\right)\in L^2(-1,1)^m\qquad\longrightarrow\qquad u^\dagger\in L^2(\mathcal{B}_1)
$$

(Some) related literature

$$
\left(\mathfrak{R}u^{\dagger}(\theta_{1},\cdot),\ldots,\mathfrak{R}u^{\dagger}(\theta_{m},\cdot)\right)\in L^{2}(-1,1)^{m}\qquad\longrightarrow\qquad u^{\dagger}\in L^{2}(\mathcal{B}_{1})
$$

Empirical works:

- ▶ Siltanen et al, *Statistical inversion for medical x-ray tomography with few radiographs*, 2003
- ▶ Hämäläinen et al, *Sparse Tomography*, 2013
- ▶ Jørgensen and Sidky, *How little data is enough? Phase-diagram analysis of sparsity-regularized X-ray computed tomography*, 2015
- ▶ Jørgensen, Coban, Lionheart, McDonald and Withers, *SparseBeads data: benchmarking sparsity-regularized computed tomography*, 2017
- ▶ Bubba and Ratti, *Shearlet-based regularization in statistical inverse learning with an application to x-ray tomography*, 2022

(Some) related literature

$$
\left(\mathfrak{R}u^{\dagger}(\theta_{1},\cdot),\ldots,\mathfrak{R}u^{\dagger}(\theta_{m},\cdot)\right)\in L^{2}(-1,1)^{m}\qquad\longrightarrow\qquad u^{\dagger}\in L^{2}(\mathcal{B}_{1})
$$

Empirical works:

- ▶ Siltanen et al, *Statistical inversion for medical x-ray tomography with few radiographs*, 2003
- ▶ Hämäläinen et al, *Sparse Tomography*, 2013
- ▶ Jørgensen and Sidky, *How little data is enough? Phase-diagram analysis of sparsity-regularized X-ray computed tomography*, 2015
- ▶ Jørgensen, Coban, Lionheart, McDonald and Withers, *SparseBeads data: benchmarking sparsity-regularized computed tomography*, 2017
- ▶ Bubba and Ratti, *Shearlet-based regularization in statistical inverse learning with an application to x-ray tomography*, 2022

. . .

Theoretical works:

Main question:

number of measurements (sample complexity) $\;\;\longleftrightarrow\;\;$ sparsity of \mathfrak{u}^\dagger

Main question:

number of measurements (sample complexity) $\;\;\longleftrightarrow\;\;$ sparsity of \mathfrak{u}^\dagger Compressed sensing!

Main question:

number of measurements (sample complexity) $\;\;\longleftrightarrow\;\;$ sparsity of \mathfrak{u}^\dagger Compressed sensing! But...

Main question:

number of measurements (sample complexity) $\;\;\longleftrightarrow\;\;$ sparsity of \mathfrak{u}^\dagger Compressed sensing! But...

▶ From Jørgensen, Coban, Lionheart, McDonald and Withers, 2017:

Compressive sensing connects the critical number of projections to the image sparsity, but does not cover CT. Empirical results suggest a similar connection.

Main question:

number of measurements (sample complexity) $\;\;\longleftrightarrow\;\;$ sparsity of \mathfrak{u}^\dagger Compressed sensing! But...

▶ From Jørgensen, Coban, Lionheart, McDonald and Withers, 2017:

Compressive sensing connects the critical number of projections to the image sparsity, but does not cover CT. Empirical results suggest a similar connection.

▶ From Hansen, 2017:

We used simulations studies to provide a foundation for the use of sparsity in CT where, unlike compressed sensing, it is not possible to give rigorous proofs.

UniGe | MaLGa

Main result at the end!

Main result at the end!

SPOILER

Main result at the end!

SPOILER

m ≳ **sparsity**

[Compressed sensing](#page-29-0)

[Compressed sensing for the sparse Radon transform](#page-54-0)

Setup:

Setup:

- \blacktriangleright Unknown signal: $u^{\dagger} \in \mathbb{R}^{\mathsf{M}}$
- ▶ Forward map: $A: \mathbb{R}^M \to \mathbb{R}^m$ linear
- \blacktriangleright $(Au)_1 = \langle u, \psi_1 \rangle$, $l = 1, \ldots, m$

Setup:

- \blacktriangleright Unknown signal: $u^{\dagger} \in \mathbb{R}^{\mathsf{M}}$
- ▶ Forward map: $A: \mathbb{R}^M \to \mathbb{R}^m$ linear
- \blacktriangleright $(Au)_1 = \langle u, \psi_1 \rangle$, $l = 1, \ldots, m$
- \blacktriangleright the **number of measurements** is $m \leq M$

Setup:

- \blacktriangleright Unknown signal: $u^{\dagger} \in \mathbb{R}^{\mathsf{M}}$
- ▶ Forward map: $A: \mathbb{R}^M \to \mathbb{R}^m$ linear
- \blacktriangleright $(Au)_1 = \langle u, \psi_1 \rangle, l = 1, \ldots, m$
- \blacktriangleright the **number of measurements** is $m \leq M$
- \triangleright example: A = subsampled Fourier transform, ψ_1 = trigonometric polynomials (MRI)

Setup:

- \blacktriangleright Unknown signal: $u^{\dagger} \in \mathbb{R}^{\mathsf{M}}$
- ▶ Forward map: $A: \mathbb{R}^M \to \mathbb{R}^m$ linear
- \blacktriangleright $(Au)_1 = \langle u, \psi_1 \rangle$, $l = 1, \ldots, m$
- \blacktriangleright the **number of measurements** is $m \leq M$
- example: A = subsampled Fourier transform, ψ_l = trigonometric polynomials (MRI)

 u^\dagger

† Measured frequencies

Setup:

- \blacktriangleright Unknown signal: $u^{\dagger} \in \mathbb{R}^M$
- ▶ Forward map: $A: \mathbb{R}^M \to \mathbb{R}^m$ linear
- \blacktriangleright $(Au)_1 = \langle u, \psi_1 \rangle, l = 1, \ldots, m$
- \blacktriangleright the **number of measurements** is $m \leq M$
- \triangleright example: A = subsampled Fourier transform, ψ_1 = trigonometric polynomials (MRI)

Problem:

Setup:

- \blacktriangleright Unknown signal: $u^{\dagger} \in \mathbb{R}^M$
- ▶ Forward map: $A: \mathbb{R}^M \to \mathbb{R}^m$ linear
- \blacktriangleright $(Au)_1 = \langle u, \psi_1 \rangle, l = 1, \ldots, m$
- \blacktriangleright the **number of measurements** is $m \leq M$
- \triangleright example: A = subsampled Fourier transform, ψ_1 = trigonometric polynomials (MRI)

Problem: given $y = Au^{\dagger}$, retrieve the signal u^{\dagger}

Setup:

- \blacktriangleright Unknown signal: $u^{\dagger} \in \mathbb{R}^M$
- ▶ Forward map: $A: \mathbb{R}^M \to \mathbb{R}^m$ linear
- \blacktriangleright $(Au)_1 = \langle u, \psi_1 \rangle, l = 1, \ldots, m$
- \blacktriangleright the **number of measurements** is $m \leq M$
- \triangleright example: A = subsampled Fourier transform, ψ_1 = trigonometric polynomials (MRI)

Problem: given $y = Au^{\dagger}$, retrieve the signal u^{\dagger}

Issue:

Setup:

- \blacktriangleright Unknown signal: $u^{\dagger} \in \mathbb{R}^M$
- ▶ Forward map: $A: \mathbb{R}^M \to \mathbb{R}^m$ linear
- \blacktriangleright $(Au)_1 = \langle u, \psi_1 \rangle, l = 1, \ldots, m$
- \blacktriangleright the **number of measurements** is $m \leq M$
- \triangleright example: A = subsampled Fourier transform, ψ_1 = trigonometric polynomials (MRI)

Problem: given $y = Au^{\dagger}$, retrieve the signal u^{\dagger}

Issue: **impossible** when m ≪ M

Setup:

- \blacktriangleright Unknown signal: $u^{\dagger} \in \mathbb{R}^M$
- ▶ Forward map: $A: \mathbb{R}^M \to \mathbb{R}^m$ linear
- \blacktriangleright $(Au)_1 = \langle u, \psi_1 \rangle, l = 1, \ldots, m$
- \blacktriangleright the **number of measurements** is $m \leq M$
- \triangleright example: A = subsampled Fourier transform, ψ_1 = trigonometric polynomials (MRI)

Problem: given $y = Au^{\dagger}$, retrieve the signal u^{\dagger}

Issue: **impossible** when m ≪ M

Solution:

Setup:

- \blacktriangleright Unknown signal: $u^{\dagger} \in \mathbb{R}^M$
- ▶ Forward map: $A: \mathbb{R}^M \to \mathbb{R}^m$ linear
- \blacktriangleright $(Au)_1 = \langle u, \psi_1 \rangle, l = 1, \ldots, m$
- \blacktriangleright the **number of measurements** is $m \leq M$
- \triangleright example: A = subsampled Fourier transform, ψ_1 = trigonometric polynomials (MRI)

Problem: given $y = Au^{\dagger}$, retrieve the signal u^{\dagger}

Issue: **impossible** when m ≪ M

Solution: consider only **sparse** u †

Setup:

- \blacktriangleright Unknown signal: $u^{\dagger} \in \mathbb{R}^M$
- ▶ Forward map: $A: \mathbb{R}^M \to \mathbb{R}^m$ linear
- \blacktriangleright $(Au)_1 = \langle u, \psi_1 \rangle, l = 1, \ldots, m$
- \blacktriangleright the **number of measurements** is $m \leq M$
- \triangleright example: A = subsampled Fourier transform, ψ_1 = trigonometric polynomials (MRI)

Problem: given $y = Au^{\dagger}$, retrieve the signal u^{\dagger}

Issue: **impossible** when m ≪ M

Solution: consider only **sparse** u † , and retrieve u † in a **nonlinear** fashion

 \blacktriangleright $\{\varphi_n\}_{n=1}^{\mathcal{M}}$: orthonormal basis of $\mathbb{R}^{\mathcal{M}}$

- \blacktriangleright $\{\varphi_n\}_{n=1}^{\mathcal{M}}$: orthonormal basis of $\mathbb{R}^{\mathcal{M}}$
- $\blacktriangleright \Phi : \mathbb{R}^M \to \mathbb{R}^M$, $(\Phi \mathfrak{u})_n := \langle \mathfrak{u}, \varphi_n \rangle$: analysis operator

- \blacktriangleright $\{\varphi_n\}_{n=1}^{\mathcal{M}}$: orthonormal basis of $\mathbb{R}^{\mathcal{M}}$
- $\blacktriangleright \Phi: \mathbb{R}^M \to \mathbb{R}^M$, $(\Phi u)_n \coloneqq \langle u, \phi_n \rangle$: analysis operator

$$
\blacktriangleright \ \text{If } \|\Phi u\|_0 \coloneqq \# \{n \in \mathbb{N} \colon \ (\Phi u)_n \neq 0 \} \text{, then }
$$

 $\Sigma_s \coloneqq {\mathfrak{u}} \in \mathbb{R}^M$: $\|\Phi\mathfrak{u}\|_0 \leqslant s$ is called the set of s-**sparse signals**

- \blacktriangleright $\{\varphi_n\}_{n=1}^{\mathcal{M}}$: orthonormal basis of $\mathbb{R}^{\mathcal{M}}$
- \blacktriangleright $\Phi: \mathbb{R}^M \to \mathbb{R}^M$, $(\Phi u)_n := \langle u, \Phi_n \rangle$: analysis operator

$$
\blacktriangleright \ \text{If } \|\Phi u\|_0 \coloneqq \# \{n \in \mathbb{N} \colon \ (\Phi u)_n \neq 0 \} \text{, then }
$$

 $\Sigma_s \coloneqq {\mathfrak{u}} \in \mathbb{R}^M$: $\|\Phi\mathfrak{u}\|_0 \leqslant s$ is called the set of s-**sparse signals**

▶ In practice, **compressibility**:

 $u = v + \text{small}, \quad v \in \Sigma_{s}.$

Real-world signals are compressible

Figure: Left: original image - Right: image obtained (roughly) by keeping only the 1% largest coefficients with respect to a discrete wavelet basis (JPEG-2000 compression standard)

- \blacktriangleright $\mathfrak{u}^{\dagger} \in \mathbb{R}^{\mathsf{M}}$: unknown signal
- \blacktriangleright \mathfrak{u}^{\dagger} is s-sparse w.r.t. $\{\Phi_n\}_n$
- \blacktriangleright $(Au)_1 = \langle u, \psi_1 \rangle$, $l = 1, \ldots, m$: subsampled isometry

- \blacktriangleright $\mathfrak{u}^{\dagger} \in \mathbb{R}^{\mathsf{M}}$: unknown signal
- \blacktriangleright \mathfrak{u}^{\dagger} is s-sparse w.r.t. $\{\Phi_n\}_n$
- $\rightharpoonup (Au)_1 = \langle u, \psi_1 \rangle$, l = 1, . . . , m: subsampled isometry (e.g.: Fourier \implies MRI)

- \blacktriangleright $\mathfrak{u}^{\dagger} \in \mathbb{R}^{\mathsf{M}}$: unknown signal
- \blacktriangleright \mathfrak{u}^{\dagger} is s-sparse w.r.t. $\{\Phi_n\}_n$
- \blacktriangleright $(Au)_1 = \langle u, \psi_1 \rangle$, $l = 1, \ldots, m$: subsampled isometry (e.g.: Fourier \implies MRI)
- **measurements:** $y = Au^{\dagger}$

- \blacktriangleright $\mathfrak{u}^{\dagger} \in \mathbb{R}^{\mathsf{M}}$: unknown signal
- \blacktriangleright \mathfrak{u}^{\dagger} is s-sparse w.r.t. $\{\Phi_n\}_n$
- ▶ $(Au)_1 = \langle u, \psi_1 \rangle$, $l = 1, ..., m$: subsampled isometry (e.g.: Fourier \implies MRI)
- **measurements:** $u = Au^{\dagger}$
- ▶ minimization problem

 $\mathfrak{u}_* \in \mathsf{arg\,min}\{\|\Phi\mathfrak{u}\|_1 : \mathsf{A}\mathfrak{u} = \mathfrak{y}\}$ $u \in \mathbb{R}^M$

- \blacktriangleright $\mathfrak{u}^{\dagger} \in \mathbb{R}^{\mathsf{M}}$: unknown signal
- \blacktriangleright \mathfrak{u}^{\dagger} is s-sparse w.r.t. $\{\Phi_n\}_n$
- ▶ $(Au)_1 = \langle u, \psi_1 \rangle$, $l = 1, ..., m$: subsampled isometry (e.g.: Fourier \implies MRI)
- **measurements:** $y = Au^{\dagger}$
- \blacktriangleright minimization problem

$$
u_*\in \underset{u\in \mathbb{R}^M}{\text{arg min}}\{\|\Phi u\|_1: Au=y\}
$$

Theorem *If*

m ≳ s · *log factors*

³S. Foucart, H. Rauhut. *A mathematical introduction to compressive sensing*. 2013. ¹⁶

- \blacktriangleright $\mathfrak{u}^{\dagger} \in \mathbb{R}^{\mathsf{M}}$: unknown signal
- \blacktriangleright \mathfrak{u}^{\dagger} is s-sparse w.r.t. $\{\Phi_n\}_n$
- ▶ $(Au)_1 = \langle u, \psi_1 \rangle$, $l = 1, ..., m$: subsampled isometry (e.g.: Fourier \implies MRI)
- **measurements:** $y = Au^{\dagger}$
- \blacktriangleright minimization problem

$$
u_*\in \underset{u\in \mathbb{R}^M}{\text{arg min}}\{\|\Phi u\|_1: Au=y\}
$$

Theorem *If*

m ≳ s · *log factors*

then, with high probability,

 $\mathfrak{u}^\dagger = \mathfrak{u}_*$

[The sparse Radon transform](#page-3-0)

[Compressed sensing](#page-29-0)

[Compressed sensing for the sparse Radon transform](#page-54-0)

$$
\left(\mathfrak{R}u^\dagger(\theta_1,\cdot),\ldots,\mathfrak{R}u^\dagger(\theta_m,\cdot)\right)\in L^2(-1,1)^m\qquad\longrightarrow\qquad u^\dagger\in L^2(\mathcal{B}_1)
$$

$$
(\mathcal{R}u^{\dagger}(\theta_1,\cdot),\ldots,\mathcal{R}u^{\dagger}(\theta_m,\cdot))\in L^2(-1,1)^m \qquad \longrightarrow \qquad u^{\dagger}\in L^2(\mathcal{B}_1)
$$

Main obstacles:

$$
\left(\mathfrak{R}u^{\dagger}(\theta_{1},\cdot),\ldots,\mathfrak{R}u^{\dagger}(\theta_{m},\cdot)\right)\in L^{2}(-1,1)^{m}\qquad\longrightarrow\qquad u^{\dagger}\in L^{2}(\mathbb{B}_{1})
$$

Main obstacles:

 \blacktriangleright Infinite-dimensional setting

$$
\big(\mathfrak{R} u^\dagger(\theta_1,\cdot),\ldots,\mathfrak{R} u^\dagger(\theta_m,\cdot)\big)\in L^2(-1,1)^m\qquad\longrightarrow\qquad u^\dagger\in L^2(\mathbb{B}_1)
$$

Main obstacles:

 \blacktriangleright Infinite-dimensional setting:

Grasmair, Scherzer, Haltmeier, *Necessary and sufficient conditions for linear convergence of* ℓ 1 *-regularization*, 2011 Adcock, Hansen, *Generalized Sampling and Infinite-Dimensional CS*, 2016

$$
\big(\mathfrak{R}u^\dagger(\theta_1,\cdot),\ldots,\mathfrak{R}u^\dagger(\theta_m,\cdot)\big)\in L^2(-1,1)^m\qquad\longrightarrow\qquad u^\dagger\in L^2(\mathcal{B}_1)
$$

Main obstacles:

 \blacktriangleright Infinite-dimensional setting:

Grasmair, Scherzer, Haltmeier, *Necessary and sufficient conditions for linear convergence of* ℓ 1 *-regularization*, 2011 Adcock, Hansen, *Generalized Sampling and Infinite-Dimensional CS*, 2016

▶ Pointwise values (aka interpolation) vs. scalar products

$$
\big(\mathfrak{R}u^\dagger(\theta_1,\cdot),\ldots,\mathfrak{R}u^\dagger(\theta_m,\cdot)\big)\in L^2(-1,1)^m\qquad\longrightarrow\qquad u^\dagger\in L^2(\mathcal{B}_1)
$$

Main obstacles:

 \blacktriangleright Infinite-dimensional setting:

Grasmair, Scherzer, Haltmeier, *Necessary and sufficient conditions for linear convergence of* ℓ 1 *-regularization*, 2011 Adcock, Hansen, *Generalized Sampling and Infinite-Dimensional CS*, 2016

 \triangleright Pointwise values (aka interpolation) vs. scalar products:

Rauhut, Ward, *Interpolation via weighted* ℓ ¹ *minimization*, 2016

$$
\big(\mathfrak{R} u^\dagger(\theta_1,\cdot),\ldots,\mathfrak{R} u^\dagger(\theta_m,\cdot)\big)\in L^2(-1,1)^m\qquad\longrightarrow\qquad u^\dagger\in L^2(\mathcal{B}_1)
$$

Main obstacles:

 \blacktriangleright Infinite-dimensional setting:

Grasmair, Scherzer, Haltmeier, *Necessary and sufficient conditions for linear convergence of* ℓ 1 *-regularization*, 2011 Adcock, Hansen, *Generalized Sampling and Infinite-Dimensional CS*, 2016

Pointwise values (aka interpolation) vs. scalar products:

Rauhut, Ward, *Interpolation via weighted* ℓ ¹ *minimization*, 2016

▶ Vector-valued measurements?

$$
\big(\mathfrak{R} u^\dagger(\theta_1,\cdot),\ldots,\mathfrak{R} u^\dagger(\theta_m,\cdot)\big)\in L^2(-1,1)^m\qquad\longrightarrow\qquad u^\dagger\in L^2(\mathcal{B}_1)
$$

Main obstacles:

 \blacktriangleright Infinite-dimensional setting:

Grasmair, Scherzer, Haltmeier, *Necessary and sufficient conditions for linear convergence of* ℓ 1 *-regularization*, 2011 Adcock, Hansen, *Generalized Sampling and Infinite-Dimensional CS*, 2016

 \triangleright Pointwise values (aka interpolation) vs. scalar products:

Rauhut, Ward, *Interpolation via weighted* ℓ ¹ *minimization*, 2016

▶ Vector-valued measurements?

Check: the whole theory still works

$$
\big(\mathcal{R}u^\dagger(\theta_1,\cdot),\ldots,\mathcal{R}u^\dagger(\theta_m,\cdot)\big)\in L^2(-1,1)^m\qquad\longrightarrow\qquad u^\dagger\in L^2(\mathcal{B}_1)
$$

Main obstacles:

 \blacktriangleright Infinite-dimensional setting:

Grasmair, Scherzer, Haltmeier, *Necessary and sufficient conditions for linear convergence of* ℓ 1 *-regularization*, 2011 Adcock, Hansen, *Generalized Sampling and Infinite-Dimensional CS*, 2016

 \triangleright Pointwise values (aka interpolation) vs. scalar products:

Rauhut, Ward, *Interpolation via weighted* ℓ ¹ *minimization*, 2016

▶ Vector-valued measurements?

Check: the whole theory still works

1. **Forward map** R **affects sparsity**

$$
\left(\mathfrak{R}u^\dagger(\theta_1,\cdot),\ldots,\mathfrak{R}u^\dagger(\theta_m,\cdot)\right)\in L^2(-1,1)^m\qquad\longrightarrow\qquad u^\dagger\in L^2(\mathcal{B}_1)
$$

Main obstacles:

 \blacktriangleright Infinite-dimensional setting:

Grasmair, Scherzer, Haltmeier, *Necessary and sufficient conditions for linear convergence of* ℓ 1 *-regularization*, 2011 Adcock, Hansen, *Generalized Sampling and Infinite-Dimensional CS*, 2016

 \triangleright Pointwise values (aka interpolation) vs. scalar products:

Rauhut, Ward, *Interpolation via weighted* ℓ ¹ *minimization*, 2016

▶ Vector-valued measurements?

Check: the whole theory still works

- 1. **Forward map** R **affects sparsity**
- 2. **Ill-posed problem**⁴

1. Forward map R **affects sparsity**⁵

⁵E. Herrholz, G. Teschke, Compressive sensing principles and iterative sparse recovery for inverse and ill-posed problems, 2010 1992 and 1993 $\frac{1}{2}$

1. Forward map R **affects sparsity**⁵

A priori assumption: u^{\dagger} is s-sparse/compressible

⁵E. Herrholz, G. Teschke, Compressive sensing principles and iterative sparse recovery for inverse and $\frac{1}{2}$ ill-posed problems, 2010 19

1. Forward map $\mathcal R$ affects sparsity⁵

- A priori assumption: u^{\dagger} is s-sparse/compressible
- \triangleright Problem: for general F, Fu[†] might not be s-sparse w.r.t. a reasonable dictionary

⁵E. Herrholz, G. Teschke, Compressive sensing principles and iterative sparse recovery for inverse and $\frac{1}{2}$ ill-posed problems, 2010 19

1. Forward map $\mathcal R$ affects sparsity⁵

- A priori assumption: u^{\dagger} is s-sparse/compressible
- Problem: for general F, Fu^{\dagger} might not be s-sparse w.r.t. a reasonable dictionary
- ▶ Solution: many dictionaries and operators of interest are 'compatible'

⁵E. Herrholz, G. Teschke, Compressive sensing principles and iterative sparse recovery for inverse and \blacksquare ill-posed problems, 2010 19

1. Forward map R **affects sparsity: quasi-diagonalization**

▶ For $b = \frac{1}{2}$, the forward map \Re satisfies

$$
\|\mathfrak{R} u\|^2\asymp \|u\|_{H^{-b}}^2,\quad u\in L^2(\mathfrak{B}_1)
$$

1. Forward map R **affects sparsity: quasi-diagonalization**

▶ For $b = \frac{1}{2}$, the forward map \Re satisfies

$$
\|\mathfrak{Ru}\|^2\asymp\|u\|_{H^{-b}}^2,\quad u\in L^2(\mathfrak{B}_1)
$$

 \blacktriangleright the family $(\varphi_{j,n})_{j,n}$ (e.g.: wavelets) satisfies a **Littlewood-Paley property**⁶:

$$
\sum_{j,n}2^{-2bj}|\langle u,\varphi_{j,n}\rangle|^2\asymp \|u\|_{H^{-b}}^2,\quad u\in L^2(\mathcal{B}_1)
$$

1. Forward map R **affects sparsity: quasi-diagonalization**

▶ For $b = \frac{1}{2}$, the forward map \Re satisfies

UniGe Ma

$$
\|\mathfrak{Ru}\|^2\asymp\|u\|_{H^{-b}}^2,\quad u\in L^2(\mathfrak{B}_1)
$$

 \blacktriangleright the family $(\varphi_{j,n})_{j,n}$ (e.g.: wavelets) satisfies a **Littlewood-Paley property**⁶:

$$
\sum_{j,n}2^{-2bj}|\langle u,\varphi_{j,n}\rangle|^2\asymp \|u\|_{H^{-b}}^2,\quad u\in L^2(\mathcal{B}_1)
$$

▶ Then we have a **quasi-diagonalization property**:

$$
\|\mathfrak{R} u\|^2\asymp \sum_{j,n}2^{-2bj}|\langle u,\varphi_{j,n}\rangle|^2
$$

1. Forward map R **affects sparsity: quasi-diagonalization**

▶ For $b = \frac{1}{2}$, the forward map \Re satisfies

UniGe

$$
\|\mathfrak{Ru}\|^2\asymp\|u\|_{H^{-b}}^2,\quad u\in L^2(\mathfrak{B}_1)
$$

 \blacktriangleright the family $(\varphi_{j,n})_{j,n}$ (e.g.: wavelets) satisfies a **Littlewood-Paley property**⁶:

$$
\sum_{j,n}2^{-2bj}|\langle u,\varphi_{j,n}\rangle|^2\asymp \|u\|_{H^{-b}}^2,\quad u\in L^2(\mathcal{B}_1)
$$

▶ Then we have a **quasi-diagonalization property**:

$$
\|\mathfrak{R} u\|^2\asymp \sum_{j,n}2^{-2bj}|\langle u,\varphi_{j,n}\rangle|^2
$$

▶ R is comparable to the action of a **diagonal operator** on the coefficients Φu

1. Forward map R **affects sparsity: quasi-diagonalization**

▶ For $b = \frac{1}{2}$, the forward map \Re satisfies

$$
\|\mathfrak{Ru}\|^2\asymp\|u\|_{H^{-b}}^2,\quad u\in L^2(\mathfrak{B}_1)
$$

 \blacktriangleright the family $(\varphi_{j,n})_{j,n}$ (e.g.: wavelets) satisfies a **Littlewood-Paley property**⁶:

$$
\sum_{j,n}2^{-2bj}|\langle u,\varphi_{j,n}\rangle|^2\asymp \|u\|_{H^{-b}}^2,\quad u\in L^2(\mathcal{B}_1)
$$

▶ Then we have a **quasi-diagonalization property**:

$$
\|\mathfrak{R} u\|^2\asymp \sum_{j,n}2^{-2bj}|\langle u,\varphi_{j,n}\rangle|^2
$$

- ▶ R is comparable to the action of a **diagonal operator** on the coefficients Φu
- \blacktriangleright Information on sparsity of $\mathfrak{u}^\dagger \Rightarrow$ information on $\mathcal{R} \mathfrak{u}^\dagger$

UniGe MalGa

▶ Classical CS: Restricted Isometry Property (RIP)

$$
(1-\delta)\|u\|^2\leqslant\|Au\|_2^2\leqslant(1+\delta)\|u\|^2,\quad u\in\Sigma_s
$$

for m sufficiently large.

▶ Classical CS: Restricted Isometry Property (RIP)

$$
(1-\delta)\|u\|^2\leqslant\|Au\|_2^2\leqslant(1+\delta)\|u\|^2,\quad u\in\Sigma_s
$$

for m sufficiently large.

▶ Our setting: generalized RIP (g-RIP)⁷

 $(1-\delta) \left(\|\mathsf{G} \mathsf{u}\|^2 + \alpha^2 \|\mathsf{u}\|^2 \right) \leqslant \|\mathsf{A} \mathsf{u}\|^2 + \alpha^2 \|\mathsf{u}\|^2 \leqslant (1+\delta) \left(\|\mathsf{G} \mathsf{u}\|^2 + \alpha^2 \|\mathsf{u}\|^2 \right)$ $u \in \Sigma_{s}$

▶ Classical CS: Restricted Isometry Property (RIP)

 $(1 - δ) ||u||^2 \le ||Au||_2^2 \le (1 + δ) ||u||^2$, $u \in \Sigma_s$

for m sufficiently large.

▶ Our setting: generalized RIP (g-RIP)⁷

 $\left(1-\delta\right) \left(\|\mathsf{G} \mathsf{u}\|^2 + \alpha^2 \|\mathsf{u}\|^2\right) \leqslant \|\mathsf{A} \mathsf{u}\|^2 + \alpha^2 \|\mathsf{u}\|^2 \leqslant \left(1+\delta\right) \left(\|\mathsf{G} \mathsf{u}\|^2 + \alpha^2 \|\mathsf{u}\|^2\right), \quad \mathsf{u} \in \mathsf{\Sigma}_s$

where

 $\texttt{-}$ G \coloneqq $\sqrt{\texttt{P}_\text{M}\mathcal{R}^*\mathcal{R}\texttt{I}_\text{M}}$ encodes properties of the *truncated* forward map \mathcal{R}

UniGe Mal

▶ Classical CS: Restricted Isometry Property (RIP)

 $(1 - δ) ||u||^2 \le ||Au||_2^2 \le (1 + δ) ||u||^2$, $u \in \Sigma_s$

for m sufficiently large.

▶ Our setting: generalized RIP (g-RIP)⁷

 $(1-\delta)\left(\|\mathsf{G} \mathsf{u}\|^2+\alpha^2 \|\mathsf{u}\|^2\right) \leqslant \|\mathsf{A} \mathsf{u}\|^2+\alpha^2 \|\mathsf{u}\|^2 \leqslant (1+\delta)\left(\|\mathsf{G} \mathsf{u}\|^2+\alpha^2 \|\mathsf{u}\|^2\right), \quad \mathsf{u} \in \mathsf{\Sigma}_s$

where

- $\mathsf{C} \cdot \mathsf{C} = \sqrt{\mathsf{P}_\mathsf{M}\mathfrak{R}^*\mathfrak{R}\mathfrak{\iota}_\mathsf{M}}$ encodes properties of the *truncated* forward map \mathfrak{R}
- $-\alpha \geqslant 0$ is a regularization parameter (elastic net)

UniGe Ma

$(\mathcal{R} \mathfrak{u}^\dagger(\theta_1, \cdot), \dots, \mathcal{R} \mathfrak{u}^\dagger(\theta_m, \cdot)) \in L^2(-1, 1)^m \longrightarrow \mathfrak{u}^\dagger \in L^2(\mathcal{B}_1)$

$$
\left(\mathfrak{R}u^\dagger(\theta_1,\cdot),\ldots,\mathfrak{R}u^\dagger(\theta_m,\cdot)\right)\in L^2(-1,1)^m\qquad\longrightarrow\qquad u^\dagger\in L^2(\mathbb{B}_1)
$$

Theorem (A, Felisi, Santacesaria, Trapasso)

▶ Unknown: $u^{\dagger} \in L^2(\mathcal{B}_1)$

$$
\left(\mathfrak{R}u^\dagger(\theta_1,\cdot),\ldots,\mathfrak{R}u^\dagger(\theta_m,\cdot)\right)\in L^2(-1,1)^m\qquad\longrightarrow\qquad u^\dagger\in L^2(\mathcal{B}_1)
$$

Theorem (A, Felisi, Santacesaria, Trapasso)

- ▶ Unknown: $u^{\dagger} \in L^2(\mathcal{B}_1)$
- ▶ Sparsity: u^{\dagger} is s-sparse wrt an ONB of wavelets $(\phi_{j,n})_{j,n}$

$$
\left(\mathfrak{R}u^{\dagger}(\theta_{1},\cdot),\ldots,\mathfrak{R}u^{\dagger}(\theta_{m},\cdot)\right)\in L^{2}(-1,1)^{m}\qquad\longrightarrow\qquad u^{\dagger}\in L^{2}(\mathcal{B}_{1})
$$

Theorem (A, Felisi, Santacesaria, Trapasso)

- ▶ Unknown: $u^{\dagger} \in L^2(\mathcal{B}_1)$
- ▶ Sparsity: u^{\dagger} is s-sparse wrt an ONB of wavelets $(\phi_{j,n})_{j,n}$
- $▶$ *Measurements:* $\theta_1, \ldots, \theta_m \in [0, \pi]$ *chosen uniformly at random with*

m ≳ s · *log factors*

$$
\left(\mathfrak{R}u^\dagger(\theta_1,\cdot),\ldots,\mathfrak{R}u^\dagger(\theta_m,\cdot)\right)\in L^2(-1,1)^m\qquad\longrightarrow\qquad u^\dagger\in L^2(\mathfrak{B}_1)
$$

Theorem (A, Felisi, Santacesaria, Trapasso)

- ▶ Unknown: $u^{\dagger} \in L^2(\mathcal{B}_1)$
- ▶ Sparsity: u^{\dagger} is s-sparse wrt an ONB of wavelets $(\phi_{j,n})_{j,n}$
- $▶$ *Measurements:* $\theta_1, \ldots, \theta_m \in [0, \pi]$ *chosen uniformly at random with*

m ≳ s · *log factors*

▶ *Minimization problem:*

 $\mathfrak{u}_* \in \mathsf{arg} \min \|\Phi \mathfrak{u}\|_1 \quad \textsf{subject~to} \quad \mathfrak{R}_{\theta_1} \mathfrak{u} = \mathfrak{R}_{\theta_1} \mathfrak{u}^\dagger, \,\, \mathfrak{l} = 1, \ldots, \mathfrak{m}$ u

$$
\left(\mathfrak{R}u^\dagger(\theta_1,\cdot),\ldots,\mathfrak{R}u^\dagger(\theta_m,\cdot)\right)\in L^2(-1,1)^m\qquad\longrightarrow\qquad u^\dagger\in L^2(\mathfrak{B}_1)
$$

Theorem (A, Felisi, Santacesaria, Trapasso)

- ▶ Unknown: $u^{\dagger} \in L^2(\mathcal{B}_1)$
- ▶ Sparsity: u^{\dagger} is s-sparse wrt an ONB of wavelets $(\phi_{j,n})_{j,n}$
- $▶$ *Measurements:* $\theta_1, \ldots, \theta_m \in [0, \pi]$ *chosen uniformly at random with*

m ≳ s · *log factors*

▶ *Minimization problem:*

 $\mathfrak{u}_* \in \mathsf{arg} \min \|\Phi \mathfrak{u}\|_1 \quad \textsf{subject~to} \quad \mathfrak{R}_{\theta_1} \mathfrak{u} = \mathfrak{R}_{\theta_1} \mathfrak{u}^\dagger, \,\, \mathfrak{l} = 1, \ldots, \mathfrak{m}$ u

Then, with high probability,

$$
\mathfrak{u}_*=\mathfrak{u}^\dagger
$$

UniGe

A few comments

- \triangleright This theorem is a particular case of an abstract result dealing with:
	- compressed sensing and interpolation simultaneously
	- Hilbert space-valued measurements
	- ill-posed inverse problems

A few comments

\triangleright This theorem is a particular case of an abstract result dealing with:

- compressed sensing and interpolation simultaneously
- Hilbert space-valued measurements
- ill-posed inverse problems
- \blacktriangleright Explicit estimates with
	- noisy data
	- $\,$ compressible (and not sparse) u^\dagger
	- regularization with sampling: $m = m(noise)$

Conclusions

Past

- ▶ Rigorous theory of compressed sensing for subsampled isometries (e.g. MRI)
- ▶ Empirical evidence for compressed sensing Radon transform

Conclusions

Past

- \triangleright Rigorous theory of compressed sensing for subsampled isometries (e.g. MRI)
- ▶ Empirical evidence for compressed sensing Radon transform

Present

- ▶ Rigorous theory of compressed sensing for the sparse Radon transform
- \blacktriangleright Abstract theory of sample complexity

Conclusions

Past

- \triangleright Rigorous theory of compressed sensing for subsampled isometries (e.g. MRI)
- ▶ Empirical evidence for compressed sensing Radon transform

Present

- ▶ Rigorous theory of compressed sensing for the sparse Radon transform
- ▶ Abstract theory of sample complexity

Future

UniGe

- ▶ Fan-beam geometry
- ▶ Wavelets \rightarrow shearlets, curvelets, etc.
- \blacktriangleright Generalisation to other ill-posed problems
- ▶ Nonlinear problems
- \triangleright Compressed sensing with generative models