

Compressed sensing for the sparse Radon transform

Giovanni S. Alberti

MaLGa – Machine Learning Genoa Center Department of Mathematics University of Genoa

Joint work with

Alessandro Felisi (UniGe)

Matteo Santacesaria (UniGe)

S. Ivan Trapasso (PoliTo)

Outline

The sparse Radon transform

Compressed sensing

Compressed sensing for the sparse Radon transform

Outline

The sparse Radon transform

Compressed sensing

Compressed sensing for the sparse Radon transform

The Radon transform

$$\mathfrak{Ru}(\theta,s) = \int_{\theta^{\perp}} u(y+s\theta) dy$$

b Domain: $\mathcal{B}_1 = B(0, 1) \subseteq \mathbb{R}^2$

- **b** Domain: $\mathcal{B}_1 = B(0, 1) \subseteq \mathbb{R}^2$
- Radon transform at fixed angle $\theta \in \mathbb{S}^1$:

$$\mathcal{R}_{\theta} \colon L^{2}(\mathcal{B}_{1}) \to L^{2}(-1,1), \qquad \mathcal{R}_{\theta}\mathfrak{u}(s) = \int_{\theta^{\perp}} \mathfrak{u}(y+s\theta) dy$$

- **b** Domain: $\mathcal{B}_1 = B(0, 1) \subseteq \mathbb{R}^2$
- Radon transform at fixed angle $\theta \in \mathbb{S}^1$:

$$\mathcal{R}_{\theta} \colon L^{2}(\mathcal{B}_{1}) \to L^{2}(-1,1), \qquad \mathcal{R}_{\theta}\mathfrak{u}(s) = \int_{\theta^{\perp}} \mathfrak{u}(y + s\theta) dy$$

Radon transform:

$$\mathfrak{R}: L^{2}(\mathfrak{B}_{1}) \to L^{2}(\mathbb{S}^{1} \times [-1, 1]), \qquad \mathfrak{Ru}(\theta, s) = \mathfrak{R}_{\theta}\mathfrak{u}(s)$$

- ▶ Domain: $\mathcal{B}_1 = B(0, 1) \subseteq \mathbb{R}^2$
- Radon transform at fixed angle $\theta \in \mathbb{S}^1$:

$$\mathcal{R}_{\theta} \colon L^{2}(\mathcal{B}_{1}) \to L^{2}(-1,1), \qquad \mathcal{R}_{\theta}\mathfrak{u}(s) = \int_{\theta^{\perp}} \mathfrak{u}(y + s\theta) dy$$

Radon transform:

Uni**Ge**

$$\mathfrak{R} \colon L^2(\mathfrak{B}_1) \to L^2(\mathbb{S}^1 \times [-1,1]), \qquad \mathfrak{Ru}(\theta,s) = \mathfrak{R}_{\theta}\mathfrak{u}(s)$$

Ill-posedness/inversion:

$$\|\mathfrak{R}\mathfrak{u}\|_{L^2} \asymp \|\mathfrak{u}\|_{H^{-\frac{1}{2}}}$$

$$\mathfrak{R}_{\theta}\mathfrak{u}(s) = \int_{\theta^{\perp}}\mathfrak{u}(y+s\theta)dy, \qquad \theta = \theta_1$$

$$\mathcal{R}_{\theta} \mathfrak{u}(s) = \int_{\theta^{\perp}} \mathfrak{u}(y + s\theta) dy, \qquad \theta = \theta_2$$

$$\mathcal{R}_{\theta} \mathfrak{u}(s) = \int_{\theta^{\perp}} \mathfrak{u}(y + s\theta) dy, \qquad \theta = \theta_3$$

$$\mathcal{R}_{\theta} \mathfrak{u}(s) = \int_{\theta^{\perp}} \mathfrak{u}(y + s\theta) dy, \qquad \theta = \theta_4$$

$$\left(\mathfrak{Ru}^{\dagger}(\theta_{1},\cdot),\ldots,\mathfrak{Ru}^{\dagger}(\theta_{m},\cdot)\right),\quad\theta_{1},\ldots,\theta_{m}\overset{i.i.d.}{\sim}\nu\text{ uniform on }\mathbb{S}^{1}$$

► Data:

$$\left(\mathcal{R}\mathfrak{u}^{\dagger}(\theta_{1},\cdot),\ldots,\mathcal{R}\mathfrak{u}^{\dagger}(\theta_{m},\cdot)\right), \quad \theta_{1},\ldots,\theta_{m} \overset{i.i.d.}{\sim} \nu \text{ uniform on } \mathbb{S}^{1}$$

Data:

$$\left(\mathfrak{Ru}^{\dagger}(\theta_{1},\cdot),\ldots,\mathfrak{Ru}^{\dagger}(\theta_{m},\cdot)\right), \quad \theta_{1},\ldots,\theta_{m} \overset{i.i.d.}{\sim} \nu \text{ uniform on } \mathbb{S}^{1}$$

► Unknown:

 $\mathfrak{u}^{\dagger}\in L^{2}(\mathfrak{B}_{1})$

Data:

$$\left(\mathfrak{Ru}^{\dagger}(\theta_1,\cdot),\ldots,\mathfrak{Ru}^{\dagger}(\theta_m,\cdot)\right),\quad \theta_1,\ldots,\theta_m\overset{i.i.d.}{\sim}\nu \text{ uniform on }\mathbb{S}^1$$

Unknown:

$$\mathfrak{u}^{\dagger}\in L^{2}(\mathfrak{B}_{1})$$

 \blacktriangleright Subsampled measurements \implies need a-priori information on \mathfrak{u}^\dagger

Data:

$$\left(\mathfrak{Ru}^{\dagger}(\theta_{1},\cdot),\ldots,\mathfrak{Ru}^{\dagger}(\theta_{m},\cdot)\right),\quad\theta_{1},\ldots,\theta_{m}\overset{i.i.d.}{\sim}\nu\text{ uniform on }\mathbb{S}^{1}$$

Unknown:

$$\mathfrak{u}^{\dagger}\in L^{2}(\mathfrak{B}_{1})$$

- \blacktriangleright Subsampled measurements $\quad \Longrightarrow \quad need \text{ a-priori information on } u^{\dagger}$
- **•** Natural assumption: u^{\dagger} is sparse

(Some) related literature

$$\left(\mathfrak{Ru}^{\dagger}(\theta_{1},\cdot),\ldots,\mathfrak{Ru}^{\dagger}(\theta_{\mathfrak{m}},\cdot)\right)\in L^{2}(-1,1)^{\mathfrak{m}}\qquad\longrightarrow\qquad \mathfrak{u}^{\dagger}\in L^{2}(\mathbb{B}_{1})$$

(Some) related literature

$$\left(\mathfrak{Ru}^{\dagger}(\theta_{1},\cdot),\ldots,\mathfrak{Ru}^{\dagger}(\theta_{\mathfrak{m}},\cdot)\right)\in L^{2}(-1,1)^{\mathfrak{m}}\qquad\longrightarrow\qquad\mathfrak{u}^{\dagger}\in L^{2}(\mathbb{B}_{1})$$

Empirical works:

- Siltanen et al, Statistical inversion for medical x-ray tomography with few radiographs, 2003
- ► Hämäläinen et al, Sparse Tomography, 2013
- Jørgensen and Sidky, How little data is enough? Phase-diagram analysis of sparsity-regularized X-ray computed tomography, 2015
- ► Jørgensen, Coban, Lionheart, McDonald and Withers, SparseBeads data: benchmarking sparsity-regularized computed tomography, 2017
- Bubba and Ratti, Shearlet-based regularization in statistical inverse learning with an application to x-ray tomography, 2022

(Some) related literature

$$\left(\mathfrak{Ru}^{\dagger}(\theta_{1},\cdot),\ldots,\mathfrak{Ru}^{\dagger}(\theta_{\mathfrak{m}},\cdot)\right)\in L^{2}(-1,1)^{\mathfrak{m}}\qquad\longrightarrow\qquad\mathfrak{u}^{\dagger}\in L^{2}(\mathbb{B}_{1})$$

Empirical works:

- Siltanen et al, Statistical inversion for medical x-ray tomography with few radiographs, 2003
- ► Hämäläinen et al, Sparse Tomography, 2013
- Jørgensen and Sidky, How little data is enough? Phase-diagram analysis of sparsity-regularized X-ray computed tomography, 2015
- ► Jørgensen, Coban, Lionheart, McDonald and Withers, SparseBeads data: benchmarking sparsity-regularized computed tomography, 2017
- Bubba and Ratti, Shearlet-based regularization in statistical inverse learning with an application to x-ray tomography, 2022

. . .

Theoretical works:

Main question:

number of measurements (sample complexity) $\quad \longleftrightarrow \quad \text{sparsity of } u^\dagger$

Main question:

number of measurements (sample complexity) \longleftrightarrow sparsity of \mathfrak{u}^{\dagger} Compressed sensing!

Main question:

number of measurements (sample complexity) \iff sparsity of \mathfrak{u}^{\dagger} Compressed sensing! But...

Main question:

From Jørgensen, Coban, Lionheart, McDonald and Withers, 2017:

Compressive sensing connects the critical number of projections to the image sparsity, but does not cover CT. Empirical results suggest a similar connection.

Main question:

number of measurements (sample complexity) \iff sparsity of u^{\dagger} Compressed sensing! But...

From Jørgensen, Coban, Lionheart, McDonald and Withers, 2017:

Compressive sensing connects the critical number of projections to the image sparsity, but does not cover CT. Empirical results suggest a similar connection.

From Hansen, 2017:

We used simulations studies to provide a foundation for the use of sparsity in CT where, unlike compressed sensing, it is not possible to give rigorous proofs.

UniGe MaLGa

Main result at the end!

Main result at the end!

SPOILER

Main result at the end!

SPOILER

 $m\gtrsim$ sparsity

Outline

The sparse Radon transform

Compressed sensing

Compressed sensing for the sparse Radon transform

Setup:

Setup:

- \blacktriangleright Unknown signal: $\boldsymbol{u}^{\dagger} \in \mathbb{R}^{\mathcal{M}}$
- Forward map: $A : \mathbb{R}^M \to \mathbb{R}^m$ linear
- $\blacktriangleright (A\mathfrak{u})_{\mathfrak{l}} = \langle \mathfrak{u}, \psi_{\mathfrak{l}} \rangle, \mathfrak{l} = 1, \dots, \mathfrak{m}$

Setup:

- \blacktriangleright Unknown signal: $\boldsymbol{u}^{\dagger} \in \mathbb{R}^{\mathcal{M}}$
- Forward map: $A : \mathbb{R}^M \to \mathbb{R}^m$ linear
- $\blacktriangleright (A\mathfrak{u})_{\mathfrak{l}} = \langle \mathfrak{u}, \psi_{\mathfrak{l}} \rangle, \mathfrak{l} = 1, \dots, \mathfrak{m}$
- $\blacktriangleright \$ the number of measurements is $m \leqslant \mathcal{M}$

Setup:

- \blacktriangleright Unknown signal: $\boldsymbol{u}^{\dagger} \in \mathbb{R}^{\mathcal{M}}$
- Forward map: $A : \mathbb{R}^M \to \mathbb{R}^m$ linear
- $\blacktriangleright (A\mathfrak{u})_{\mathfrak{l}} = \langle \mathfrak{u}, \psi_{\mathfrak{l}} \rangle, \, \mathfrak{l} = 1, \dots, \mathfrak{m}$
- $\blacktriangleright \$ the number of measurements is $m \leqslant \mathcal{M}$
- example: A = subsampled Fourier transform, $\psi_1 =$ trigonometric polynomials (MRI)

Setup:

- \blacktriangleright Unknown signal: $u^{\dagger} \in \mathbb{R}^{\mathcal{M}}$
- Forward map: $A : \mathbb{R}^M \to \mathbb{R}^m$ linear
- $\blacktriangleright (A\mathfrak{u})_{\mathfrak{l}} = \langle \mathfrak{u}, \psi_{\mathfrak{l}} \rangle, \, \mathfrak{l} = 1, \dots, m$
- $\blacktriangleright \$ the number of measurements is $m \leqslant \mathcal{M}$
- example: A = subsampled Fourier transform, $\psi_1 =$ trigonometric polynomials (MRI)

Measured frequencies

Setup:

- Unknown signal: $u^{\dagger} \in \mathbb{R}^{M}$
- Forward map: $A \colon \mathbb{R}^M \to \mathbb{R}^m$ linear
- $\blacktriangleright (A\mathfrak{u})_{\mathfrak{l}} = \langle \mathfrak{u}, \psi_{\mathfrak{l}} \rangle, \, \mathfrak{l} = 1, \dots, \mathfrak{m}$
- \blacktriangleright the number of measurements is $m \leqslant \mathcal{M}$
- example: A = subsampled Fourier transform, ψ_1 = trigonometric polynomials (MRI)

Problem:

Setup:

- Unknown signal: $u^{\dagger} \in \mathbb{R}^{M}$
- Forward map: $A \colon \mathbb{R}^M \to \mathbb{R}^m$ linear
- $\blacktriangleright (A\mathfrak{u})_{\mathfrak{l}} = \langle \mathfrak{u}, \psi_{\mathfrak{l}} \rangle, \, \mathfrak{l} = 1, \dots, \mathfrak{m}$
- \blacktriangleright the number of measurements is $m \leqslant \mathcal{M}$
- example: A = subsampled Fourier transform, $\psi_1 =$ trigonometric polynomials (MRI)

Problem: given $y \coloneqq Au^{\dagger}$, retrieve the signal u^{\dagger}

Setup:

- \blacktriangleright Unknown signal: $\boldsymbol{u}^{\dagger} \in \mathbb{R}^{\mathcal{M}}$
- Forward map: $A \colon \mathbb{R}^M \to \mathbb{R}^m$ linear
- $\blacktriangleright (A\mathfrak{u})_{\mathfrak{l}} = \langle \mathfrak{u}, \psi_{\mathfrak{l}} \rangle, \, \mathfrak{l} = 1, \dots, \mathfrak{m}$
- $\blacktriangleright \$ the number of measurements is $m \leqslant \mathcal{M}$
- example: A = subsampled Fourier transform, $\psi_1 =$ trigonometric polynomials (MRI)

Problem: given $\boldsymbol{y}\coloneqq A\boldsymbol{u}^{\dagger}$, retrieve the signal \boldsymbol{u}^{\dagger}

Issue:

Setup:

- Unknown signal: $u^{\dagger} \in \mathbb{R}^{M}$
- Forward map: $A \colon \mathbb{R}^M \to \mathbb{R}^m$ linear
- $\blacktriangleright (A\mathfrak{u})_{\mathfrak{l}} = \langle \mathfrak{u}, \psi_{\mathfrak{l}} \rangle, \, \mathfrak{l} = 1, \dots, \mathfrak{m}$
- \blacktriangleright the number of measurements is $m \leqslant \mathcal{M}$
- example: A = subsampled Fourier transform, $\psi_1 =$ trigonometric polynomials (MRI)

Problem: given $y \coloneqq Au^{\dagger}$, retrieve the signal u^{\dagger}

Issue: impossible when $\mathfrak{m} \ll M$

Setup:

- Unknown signal: $u^{\dagger} \in \mathbb{R}^{M}$
- Forward map: $A \colon \mathbb{R}^M \to \mathbb{R}^m$ linear
- $\blacktriangleright (A\mathfrak{u})_{\mathfrak{l}} = \langle \mathfrak{u}, \psi_{\mathfrak{l}} \rangle, \, \mathfrak{l} = 1, \dots, \mathfrak{m}$
- \blacktriangleright the number of measurements is $m \leqslant \mathcal{M}$
- example: A = subsampled Fourier transform, $\psi_1 =$ trigonometric polynomials (MRI)

Problem: given $y \coloneqq Au^{\dagger}$, retrieve the signal u^{\dagger}

Issue: impossible when $m \ll M$

Solution:

Setup:

- \blacktriangleright Unknown signal: $\boldsymbol{u}^{\dagger} \in \mathbb{R}^{\mathcal{M}}$
- Forward map: $A \colon \mathbb{R}^M \to \mathbb{R}^m$ linear
- $\blacktriangleright (A\mathfrak{u})_{\mathfrak{l}} = \langle \mathfrak{u}, \psi_{\mathfrak{l}} \rangle, \, \mathfrak{l} = 1, \dots, \mathfrak{m}$
- \blacktriangleright the number of measurements is $m \leqslant \mathcal{M}$
- example: A = subsampled Fourier transform, $\psi_1 =$ trigonometric polynomials (MRI)

Problem: given $y \coloneqq Au^{\dagger}$, retrieve the signal u^{\dagger}

Issue: **impossible** when $m \ll M$

Solution: consider only sparse u^\dagger

Setup:

- Unknown signal: $u^{\dagger} \in \mathbb{R}^{M}$
- Forward map: $A \colon \mathbb{R}^M \to \mathbb{R}^m$ linear
- $\blacktriangleright (A\mathfrak{u})_{\mathfrak{l}} = \langle \mathfrak{u}, \psi_{\mathfrak{l}} \rangle, \, \mathfrak{l} = 1, \dots, \mathfrak{m}$
- \blacktriangleright the number of measurements is $m \leqslant \mathcal{M}$
- example: A = subsampled Fourier transform, $\psi_1 =$ trigonometric polynomials (MRI)

Problem: given $y := Au^{\dagger}$, retrieve the signal u^{\dagger}

Issue: **impossible** when $\mathfrak{m} \ll M$

Solution: consider only sparse u^{\dagger} , and retrieve u^{\dagger} in a nonlinear fashion

• $\{\phi_n\}_{n=1}^M$: orthonormal basis of \mathbb{R}^M

- $\{\phi_n\}_{n=1}^M$: orthonormal basis of \mathbb{R}^M
- $\Phi \colon \mathbb{R}^M \to \mathbb{R}^M$, $(\Phi \mathfrak{u})_n \coloneqq \langle \mathfrak{u}, \varphi_n \rangle$: analysis operator

- $\{\phi_n\}_{n=1}^M$: orthonormal basis of \mathbb{R}^M
- $\Phi \colon \mathbb{R}^M \to \mathbb{R}^M$, $(\Phi u)_n \coloneqq \langle u, \varphi_n \rangle$: analysis operator
- If $\|\Phi u\|_0 \coloneqq #\{n \in \mathbb{N}: (\Phi u)_n \neq 0\}$, then

 $\Sigma_s \coloneqq \{ u \in \mathbb{R}^M : \| \Phi u \|_0 \leqslant s \}$ is called the set of *s*-sparse signals

- $\{\phi_n\}_{n=1}^M$: orthonormal basis of \mathbb{R}^M
- $\Phi \colon \mathbb{R}^M \to \mathbb{R}^M$, $(\Phi \mathfrak{u})_\mathfrak{n} \coloneqq \langle \mathfrak{u}, \varphi_\mathfrak{n} \rangle$: analysis operator

• If
$$\|\Phi u\|_0 \coloneqq #\{n \in \mathbb{N}: (\Phi u)_n \neq 0\}$$
, then

 $\Sigma_s \coloneqq \{ u \in \mathbb{R}^M : \| \Phi u \|_0 \leqslant s \}$ is called the set of *s*-sparse signals

► In practice, **compressibility**:

 $u = v + \text{small}, \quad v \in \Sigma_s.$

Real-world signals are compressible

Figure: Left: original image - Right: image obtained (roughly) by keeping only the 1% largest coefficients with respect to a discrete wavelet basis (JPEG-2000 compression standard)

- $\blacktriangleright \ \mathfrak{u}^{\dagger} \in \mathbb{R}^{\mathcal{M}}$: unknown signal
- \mathfrak{u}^{\dagger} is s-sparse w.r.t. $\{\Phi_n\}_n$
- $(Au)_l = \langle u, \psi_l \rangle$, l = 1, ..., m: subsampled isometry

- $\blacktriangleright \ \mathfrak{u}^{\dagger} \in \mathbb{R}^{\mathcal{M}}$: unknown signal
- \mathfrak{u}^{\dagger} is s-sparse w.r.t. $\{\Phi_n\}_n$
- $(Au)_l = \langle u, \psi_l \rangle$, l = 1, ..., m: subsampled isometry (e.g.: Fourier \implies MRI)

- $\blacktriangleright \ \mathfrak{u}^{\dagger} \in \mathbb{R}^{\mathcal{M}}$: unknown signal
- \mathfrak{u}^{\dagger} is s-sparse w.r.t. $\{\Phi_n\}_n$
- $(Au)_l = \langle u, \psi_l \rangle$, l = 1, ..., m: subsampled isometry (e.g.: Fourier \implies MRI)
- measurements: $y = Au^{\dagger}$

- $\blacktriangleright \ \mathfrak{u}^{\dagger} \in \mathbb{R}^{\mathcal{M}}$: unknown signal
- \mathfrak{u}^{\dagger} is s-sparse w.r.t. $\{\Phi_n\}_n$
- $(Au)_l = \langle u, \psi_l \rangle$, l = 1, ..., m: subsampled isometry (e.g.: Fourier \implies MRI)
- measurements: $y = Au^{\dagger}$
- minimization problem

 $\mathfrak{u}_* \in \mathop{\text{arg\,min}}_{\mathfrak{u} \in \mathbb{R}^M} \{ \| \Phi \mathfrak{u} \|_1 : A\mathfrak{u} = y \}$

- $\blacktriangleright \ \mathfrak{u}^{\dagger} \in \mathbb{R}^{\mathcal{M}}$: unknown signal
- \mathfrak{u}^{\dagger} is s-sparse w.r.t. $\{\Phi_n\}_n$
- $(Au)_l = \langle u, \psi_l \rangle$, l = 1, ..., m: subsampled isometry (e.g.: Fourier \implies MRI)
- measurements: $y = Au^{\dagger}$
- minimization problem

$$\mathfrak{u}_* \in \mathop{\text{arg\,min}}_{\mathfrak{u} \in \mathbb{R}^M} \{ \| \Phi \mathfrak{u} \|_1 : A\mathfrak{u} = y \}$$

Theorem If

 $m\gtrsim s\cdot \textit{log factors}$

³S. Foucart, H. Rauhut. A mathematical introduction to compressive sensing. 2013.

- $\blacktriangleright \ \mathfrak{u}^{\dagger} \in \mathbb{R}^{M}$: unknown signal
- \mathfrak{u}^{\dagger} is s-sparse w.r.t. $\{\Phi_n\}_n$
- $(Au)_l = \langle u, \psi_l \rangle$, l = 1, ..., m: subsampled isometry (e.g.: Fourier \implies MRI)
- measurements: $y = Au^{\dagger}$
- minimization problem

$$\mathfrak{u}_* \in \mathop{\text{arg min}}_{\mathfrak{u} \in \mathbb{R}^M} \{ \| \Phi \mathfrak{u} \|_1 : A\mathfrak{u} = y \}$$

Theorem If

 $m\gtrsim s\cdot \textit{log factors}$

then, with high probability,

 $\mathfrak{u}^\dagger = \mathfrak{u}_*$

³S. Foucart, H. Rauhut. A mathematical introduction to compressive sensing. 2013.

Outline

The sparse Radon transform

Compressed sensing

Compressed sensing for the sparse Radon transform

$$\left(\mathfrak{Ru}^{\dagger}(\theta_{1},\cdot),\ldots,\mathfrak{Ru}^{\dagger}(\theta_{\mathfrak{m}},\cdot)\right)\in L^{2}(-1,1)^{\mathfrak{m}}\qquad\longrightarrow\qquad\mathfrak{u}^{\dagger}\in L^{2}(\mathfrak{B}_{1})$$

$$\begin{pmatrix} \Re \mathfrak{u}^{\dagger}(\theta_1,\cdot),\ldots, \Re \mathfrak{u}^{\dagger}(\theta_m,\cdot) \end{pmatrix} \in L^2(-1,1)^m \quad \longrightarrow \quad \mathfrak{u}^{\dagger} \in L^2(\mathcal{B}_1)$$
obstacles:

Main

$$\left(\mathfrak{Ru}^{\dagger}(\theta_{1},\cdot),\ldots,\mathfrak{Ru}^{\dagger}(\theta_{\mathfrak{m}},\cdot)\right)\in L^{2}(-1,1)^{\mathfrak{m}}\qquad\longrightarrow\qquad\mathfrak{u}^{\dagger}\in L^{2}(\mathbb{B}_{1})$$

Main obstacles:

Infinite-dimensional setting

$$\left(\mathfrak{Ru}^{\dagger}(\theta_{1},\cdot),\ldots,\mathfrak{Ru}^{\dagger}(\theta_{\mathfrak{m}},\cdot)\right)\in L^{2}(-1,1)^{\mathfrak{m}}\qquad\longrightarrow\qquad \mathfrak{u}^{\dagger}\in L^{2}(\mathbb{B}_{1})$$

Main obstacles:

► Infinite-dimensional setting:

Grasmair, Scherzer, Haltmeier, Necessary and sufficient conditions for linear convergence of ℓ¹-regularization, 2011 Adcock, Hansen, Generalized Sampling and Infinite-Dimensional CS, 2016

$$\left(\mathfrak{Ru}^{\dagger}(\theta_{1},\cdot),\ldots,\mathfrak{Ru}^{\dagger}(\theta_{\mathfrak{m}},\cdot)\right)\in L^{2}(-1,1)^{\mathfrak{m}}\qquad\longrightarrow\qquad \mathfrak{u}^{\dagger}\in L^{2}(\mathfrak{B}_{1})$$

Main obstacles:

Infinite-dimensional setting:

Grasmair, Scherzer, Haltmeier, Necessary and sufficient conditions for linear convergence of ℓ¹-regularization, 2011 Adcock, Hansen, Generalized Sampling and Infinite-Dimensional CS, 2016

Pointwise values (aka interpolation) vs. scalar products

$$\left(\mathfrak{Ru}^{\dagger}(\theta_{1},\cdot),\ldots,\mathfrak{Ru}^{\dagger}(\theta_{\mathfrak{m}},\cdot)\right)\in L^{2}(-1,1)^{\mathfrak{m}}\qquad\longrightarrow\qquad \mathfrak{u}^{\dagger}\in L^{2}(\mathfrak{B}_{1})$$

Main obstacles:

Infinite-dimensional setting:

Grasmair, Scherzer, Haltmeier, Necessary and sufficient conditions for linear convergence of l¹-regularization, 2011 Adcock, Hansen, Generalized Sampling and Infinite-Dimensional CS, 2016

Pointwise values (aka interpolation) vs. scalar products:

Rauhut, Ward, Interpolation via weighted ℓ^1 minimization, 2016

 $\left(\mathfrak{Ru}^{\dagger}(\theta_{1},\cdot),\ldots,\mathfrak{Ru}^{\dagger}(\theta_{\mathfrak{m}},\cdot)\right)\in L^{2}(-1,1)^{\mathfrak{m}}\qquad\longrightarrow\qquad\mathfrak{u}^{\dagger}\in L^{2}(\mathbb{B}_{1})$

Main obstacles:

Infinite-dimensional setting:

Grasmair, Scherzer, Haltmeier, Necessary and sufficient conditions for linear convergence of l¹-regularization, 2011 Adcock, Hansen, Generalized Sampling and Infinite-Dimensional CS, 2016

Pointwise values (aka interpolation) vs. scalar products:

Rauhut, Ward, Interpolation via weighted ℓ^1 minimization, 2016

Vector-valued measurements?

 $\left(\mathfrak{Ru}^{\dagger}(\theta_{1},\cdot),\ldots,\mathfrak{Ru}^{\dagger}(\theta_{\mathfrak{m}},\cdot)\right)\in L^{2}(-1,1)^{\mathfrak{m}}\qquad\longrightarrow\qquad\mathfrak{u}^{\dagger}\in L^{2}(\mathbb{B}_{1})$

Main obstacles:

Infinite-dimensional setting:

Grasmair, Scherzer, Haltmeier, Necessary and sufficient conditions for linear convergence of l¹-regularization, 2011 Adcock, Hansen, Generalized Sampling and Infinite-Dimensional CS, 2016

Pointwise values (aka interpolation) vs. scalar products:

Rauhut, Ward, Interpolation via weighted ℓ^1 minimization, 2016

Vector-valued measurements?

Check: the whole theory still works

$$\left(\mathfrak{R}\mathfrak{u}^{\dagger}(\theta_{1},\cdot),\ldots,\mathfrak{R}\mathfrak{u}^{\dagger}(\theta_{\mathfrak{m}},\cdot) \right) \in L^{2}(-1,1)^{\mathfrak{m}} \qquad \longrightarrow \qquad \mathfrak{u}^{\dagger} \in L^{2}(\mathfrak{B}_{1})$$

Main obstacles:

UniGe

Infinite-dimensional setting:

Grasmair, Scherzer, Haltmeier, Necessary and sufficient conditions for linear convergence of l¹-regularization, 2011 Adcock, Hansen, Generalized Sampling and Infinite-Dimensional CS, 2016

Pointwise values (aka interpolation) vs. scalar products:

Rauhut, Ward, Interpolation via weighted ℓ^1 minimization, 2016

Vector-valued measurements?

Check: the whole theory still works

1. Forward map ${\mathfrak R}$ affects sparsity

$$\left(\mathfrak{R}\mathfrak{u}^{\dagger}(\theta_{1},\cdot),\ldots,\mathfrak{R}\mathfrak{u}^{\dagger}(\theta_{\mathfrak{m}},\cdot)\right)\in L^{2}(-1,1)^{\mathfrak{m}}\qquad\longrightarrow\qquad\mathfrak{u}^{\dagger}\in L^{2}(\mathfrak{B}_{1})$$

Main obstacles:

Infinite-dimensional setting:

Grasmair, Scherzer, Haltmeier, Necessary and sufficient conditions for linear convergence of l¹-regularization, 2011 Adcock, Hansen, Generalized Sampling and Infinite-Dimensional CS, 2016

Pointwise values (aka interpolation) vs. scalar products:

Rauhut, Ward, Interpolation via weighted ℓ^1 minimization, 2016

Vector-valued measurements?

Check: the whole theory still works

- 1. Forward map ${\mathfrak R}$ affects sparsity
- 2. Ill-posed problem⁴

► A priori assumption: u[†] is s-sparse/compressible

- A priori assumption: u^{\dagger} is s-sparse/compressible
- **Problem:** for general F, Fu^{\dagger} might not be *s*-sparse w.r.t. a reasonable dictionary

- A priori assumption: u^{\dagger} is s-sparse/compressible
- **Problem:** for general F, Fu^{\dagger} might not be *s*-sparse w.r.t. a reasonable dictionary
- Solution: many dictionaries and operators of interest are 'compatible'

1. Forward map $\ensuremath{\mathcal{R}}$ affects sparsity: quasi-diagonalization

• For $b = \frac{1}{2}$, the forward map \mathcal{R} satisfies

$$\|\mathfrak{R}\mathfrak{u}\|^2 \asymp \|\mathfrak{u}\|_{H^{-\mathfrak{b}}}^2, \quad \mathfrak{u} \in L^2(\mathfrak{B}_1)$$

1. Forward map $\ensuremath{\mathcal{R}}$ affects sparsity: quasi-diagonalization

• For $b = \frac{1}{2}$, the forward map \mathcal{R} satisfies

$$\|\mathfrak{R}\mathfrak{u}\|^2 \asymp \|\mathfrak{u}\|_{H^{-b}}^2, \quad \mathfrak{u} \in L^2(\mathcal{B}_1)$$

• the family $(\phi_{j,n})_{j,n}$ (e.g.: wavelets) satisfies a Littlewood-Paley property⁶:

$$\sum_{j,n} 2^{-2\mathfrak{b} j} |\langle \mathfrak{u}, \varphi_{j,n} \rangle|^2 \asymp \|\mathfrak{u}\|_{H^{-\mathfrak{b}}}^2, \quad \mathfrak{u} \in L^2(\mathcal{B}_1)$$

1. Forward map $\ensuremath{\mathcal{R}}$ affects sparsity: quasi-diagonalization

• For $b = \frac{1}{2}$, the forward map \mathcal{R} satisfies

$$\|\mathcal{R}\mathfrak{u}\|^2 \asymp \|\mathfrak{u}\|^2_{H^{-b}}, \quad \mathfrak{u} \in L^2(\mathcal{B}_1)$$

▶ the family $(\phi_{j,n})_{j,n}$ (e.g.: wavelets) satisfies a Littlewood-Paley property⁶:

$$\sum_{j,\mathfrak{n}} 2^{-2\mathfrak{b}j} |\langle \mathfrak{u}, \varphi_{j,\mathfrak{n}} \rangle|^2 \asymp \|\mathfrak{u}\|_{H^{-\mathfrak{b}}}^2, \quad \mathfrak{u} \in L^2(\mathcal{B}_1)$$

> Then we have a **quasi-diagonalization property**:

$$\|\mathfrak{R} u\|^2 \asymp \sum_{j,\mathfrak{n}} 2^{-2\mathfrak{b} j} |\langle u, \varphi_{j,\mathfrak{n}} \rangle|^2$$

⁶S. Mallat. A Wavelet Tour of Signal Processing. The Sparse Way, 2009

1. Forward map ${\mathfrak R}$ affects sparsity: quasi-diagonalization

• For $b = \frac{1}{2}$, the forward map \mathcal{R} satisfies

UniGe

$$\|\mathcal{R}u\|^2 \asymp \|u\|_{H^{-b}}^2, \quad u \in L^2(\mathcal{B}_1)$$

▶ the family $(\phi_{j,n})_{j,n}$ (e.g.: wavelets) satisfies a Littlewood-Paley property⁶:

$$\sum_{j,\mathfrak{n}} 2^{-2\mathfrak{b}j} |\langle \mathfrak{u}, \varphi_{j,\mathfrak{n}} \rangle|^2 \asymp \|\mathfrak{u}\|_{H^{-\mathfrak{b}}}^2, \quad \mathfrak{u} \in L^2(\mathcal{B}_1)$$

> Then we have a **quasi-diagonalization property**:

$$\|\mathfrak{R} u\|^2 \asymp \sum_{j,n} 2^{-2\mathfrak{b} j} |\langle u, \varphi_{j,n} \rangle|^2$$

 $\blacktriangleright \ {\mathfrak R}$ is comparable to the action of a **diagonal operator** on the coefficients $\Phi {\mathfrak u}$

1. Forward map ${\mathfrak R}$ affects sparsity: quasi-diagonalization

• For $b = \frac{1}{2}$, the forward map \mathcal{R} satisfies

$$\|\mathcal{R}\mathfrak{u}\|^2 \asymp \|\mathfrak{u}\|^2_{H^{-b}}, \quad \mathfrak{u} \in L^2(\mathcal{B}_1)$$

▶ the family $(\phi_{j,n})_{j,n}$ (e.g.: wavelets) satisfies a Littlewood-Paley property⁶:

$$\sum_{j,\mathfrak{n}} 2^{-2\mathfrak{b}j} |\langle \mathfrak{u},\varphi_{j,\mathfrak{n}}\rangle|^2 \asymp \|\mathfrak{u}\|_{H^{-\mathfrak{b}}}^2, \quad \mathfrak{u}\in L^2(\mathcal{B}_1)$$

> Then we have a **quasi-diagonalization property**:

$$\|\mathfrak{R} u\|^2 \asymp \sum_{j,\mathfrak{n}} 2^{-2\mathfrak{b} j} |\langle u, \varphi_{j,\mathfrak{n}} \rangle|^2$$

- \Re is comparable to the action of a **diagonal operator** on the coefficients Φu
- $\blacktriangleright~$ Information on sparsity of $\mathfrak{u}^{\dagger} \Rightarrow$ information on $\mathfrak{R}\mathfrak{u}^{\dagger}$

UniGe

⁶S. Mallat. A Wavelet Tour of Signal Processing. The Sparse Way, 2009

Classical CS: Restricted Isometry Property (RIP)

$$(1-\delta)\|u\|^2\leqslant \|Au\|_2^2\leqslant (1+\delta)\|u\|^2,\quad u\in \Sigma_s$$

for m sufficiently large.

⁷B. Adcock, V. Antun, A. C. Hansen. Uniform recovery in infinite-dimensional compressed sensing and applications to structured binary sampling. *Appl. Comput. Harmon. Anal.* (2021).

Classical CS: Restricted Isometry Property (RIP)

$$(1-\delta)\|u\|^2\leqslant \|Au\|_2^2\leqslant (1+\delta)\|u\|^2,\quad u\in \Sigma_s$$

for m sufficiently large.

Our setting: generalized RIP (g-RIP)⁷

 $(1-\delta)\left(\|Gu\|^2+\alpha^2\|u\|^2\right)\leqslant \|Au\|^2+\alpha^2\|u\|^2\leqslant (1+\delta)\left(\|Gu\|^2+\alpha^2\|u\|^2\right),\quad u\in\Sigma_s$

⁷B. Adcock, V. Antun, A. C. Hansen. Uniform recovery in infinite-dimensional compressed sensing and applications to structured binary sampling. *Appl. Comput. Harmon. Anal.* (2021).

Classical CS: Restricted Isometry Property (RIP)

$$(1-\delta)\|\boldsymbol{u}\|^2 \leqslant \|\boldsymbol{A}\boldsymbol{u}\|_2^2 \leqslant (1+\delta)\|\boldsymbol{u}\|^2, \quad \boldsymbol{u} \in \boldsymbol{\Sigma}_s$$

for m sufficiently large.

Our setting: generalized RIP (g-RIP)⁷

$$(1-\delta)\left(\|\textbf{G}\boldsymbol{u}\|^2+\alpha^2\|\boldsymbol{u}\|^2\right)\leqslant \|\boldsymbol{A}\boldsymbol{u}\|^2+\alpha^2\|\boldsymbol{u}\|^2\leqslant (1+\delta)\left(\|\textbf{G}\boldsymbol{u}\|^2+\alpha^2\|\boldsymbol{u}\|^2\right),\quad \boldsymbol{u}\in\boldsymbol{\Sigma}_s$$

where

- $G \coloneqq \sqrt{P_M \mathcal{R}^* \mathcal{R} \iota_M}$ encodes properties of the *truncated* forward map \mathcal{R}

⁷B. Adcock, V. Antun, A. C. Hansen. Uniform recovery in infinite-dimensional compressed sensing and applications to structured binary sampling. *Appl. Comput. Harmon. Anal.* (2021).

Classical CS: Restricted Isometry Property (RIP)

$$(1-\delta)\|\boldsymbol{u}\|^2 \leqslant \|\boldsymbol{A}\boldsymbol{u}\|_2^2 \leqslant (1+\delta)\|\boldsymbol{u}\|^2, \quad \boldsymbol{u} \in \boldsymbol{\Sigma}_s$$

for m sufficiently large.

► Our setting: generalized RIP (g-RIP)⁷

 $(1-\delta)\left(\|\mathsf{Gu}\|^2+\alpha^2\|u\|^2\right)\leqslant \|\mathsf{Au}\|^2+\alpha^2\|u\|^2\leqslant (1+\delta)\left(\|\mathsf{Gu}\|^2+\alpha^2\|u\|^2\right),\quad u\in\Sigma_s$

where

- $G \coloneqq \sqrt{P_M \mathcal{R}^* \mathcal{R} \iota_M}$ encodes properties of the *truncated* forward map \mathcal{R}
- $\alpha \ge 0$ is a regularization parameter (elastic net)

UniGe | Mal Go

⁷B. Adcock, V. Antun, A. C. Hansen. Uniform recovery in infinite-dimensional compressed sensing and applications to structured binary sampling. *Appl. Comput. Harmon. Anal.* (2021).

$\left(\mathfrak{Ru}^{\dagger}(\theta_{1},\cdot),\ldots,\mathfrak{Ru}^{\dagger}(\theta_{\mathfrak{m}},\cdot)\right)\in L^{2}(-1,1)^{\mathfrak{m}}\qquad \longrightarrow \qquad \mathfrak{u}^{\dagger}\in L^{2}(\mathfrak{B}_{1})$

$$\left(\mathfrak{Ru}^{\dagger}(\theta_{1},\cdot),\ldots,\mathfrak{Ru}^{\dagger}(\theta_{\mathfrak{m}},\cdot)\right)\in L^{2}(-1,1)^{\mathfrak{m}}\qquad \longrightarrow \qquad \mathfrak{u}^{\dagger}\in L^{2}(\mathbb{B}_{1})$$

Theorem (A, Felisi, Santacesaria, Trapasso)

• Unknown: $u^{\dagger} \in L^{2}(\mathcal{B}_{1})$

$$\left(\mathfrak{Ru}^{\dagger}(\theta_{1},\cdot),\ldots,\mathfrak{Ru}^{\dagger}(\theta_{\mathfrak{m}},\cdot)\right)\in L^{2}(-1,1)^{\mathfrak{m}}\qquad\longrightarrow\qquad\mathfrak{u}^{\dagger}\in L^{2}(\mathfrak{B}_{1})$$

Theorem (A, Felisi, Santacesaria, Trapasso)

- Unknown: $u^{\dagger} \in L^{2}(\mathcal{B}_{1})$
- Sparsity: u^{\dagger} is s-sparse wrt an ONB of wavelets $(\varphi_{j,n})_{j,n}$

$$\left(\mathfrak{Ru}^{\dagger}(\theta_{1},\cdot),\ldots,\mathfrak{Ru}^{\dagger}(\theta_{\mathfrak{m}},\cdot)\right)\in L^{2}(-1,1)^{\mathfrak{m}}\qquad \longrightarrow \qquad \mathfrak{u}^{\dagger}\in L^{2}(\mathbb{B}_{1})$$

Theorem (A, Felisi, Santacesaria, Trapasso)

- Unknown: $u^{\dagger} \in L^{2}(\mathcal{B}_{1})$
- Sparsity: u^{\dagger} is s-sparse wrt an ONB of wavelets $(\varphi_{j,n})_{j,n}$
- \blacktriangleright Measurements: $\theta_1,\ldots,\theta_m\in[0,\pi]$ chosen uniformly at random with

 $m\gtrsim s\cdot \textit{log factors}$

$$\left(\mathfrak{Ru}^{\dagger}(\theta_{1},\cdot),\ldots,\mathfrak{Ru}^{\dagger}(\theta_{\mathfrak{m}},\cdot)\right)\in L^{2}(-1,1)^{\mathfrak{m}}\qquad\longrightarrow\qquad\mathfrak{u}^{\dagger}\in L^{2}(\mathfrak{B}_{1})$$

Theorem (A, Felisi, Santacesaria, Trapasso)

- Unknown: $u^{\dagger} \in L^{2}(\mathcal{B}_{1})$
- Sparsity: u^{\dagger} is s-sparse wrt an ONB of wavelets $(\varphi_{j,n})_{j,n}$
- \blacktriangleright Measurements: $\theta_1,\ldots,\theta_m\in[0,\pi]$ chosen uniformly at random with

 $m\gtrsim s\cdot \textit{log factors}$

► Minimization problem:

 $u_* \in \mathop{\text{arg\,min}}_{u} \| \Phi u \|_1 \quad \text{subject to} \quad \mathcal{R}_{\theta_1} u = \mathcal{R}_{\theta_1} u^\dagger, \ l = 1, \dots, m$

$$\left(\mathfrak{Ru}^{\dagger}(\theta_{1},\cdot),\ldots,\mathfrak{Ru}^{\dagger}(\theta_{\mathfrak{m}},\cdot)\right)\in L^{2}(-1,1)^{\mathfrak{m}}\qquad\longrightarrow\qquad\mathfrak{u}^{\dagger}\in L^{2}(\mathfrak{B}_{1})$$

Theorem (A, Felisi, Santacesaria, Trapasso)

- Unknown: $u^{\dagger} \in L^{2}(\mathcal{B}_{1})$
- Sparsity: u^{\dagger} is s-sparse wrt an ONB of wavelets $(\varphi_{j,n})_{j,n}$
- \blacktriangleright Measurements: $\theta_1,\ldots,\theta_m\in[0,\pi]$ chosen uniformly at random with

 $m\gtrsim s\cdot \textit{log factors}$

► Minimization problem:

 $\mathfrak{u}_* \in \mathop{\text{arg\,min}}_{\mathfrak{u}} \| \Phi \mathfrak{u} \|_1 \quad \textit{subject to} \quad \mathfrak{R}_{\theta_1} \mathfrak{u} = \mathfrak{R}_{\theta_1} \mathfrak{u}^\dagger, \ \mathfrak{l} = \mathfrak{1}, \dots, \mathfrak{m}$

Then, with high probability,

$$\mathfrak{u}_* = \mathfrak{u}$$

A few comments

> This theorem is a particular case of an abstract result dealing with:

- compressed sensing and interpolation simultaneously
- Hilbert space-valued measurements
- ill-posed inverse problems

A few comments

> This theorem is a particular case of an abstract result dealing with:

- compressed sensing and interpolation simultaneously
- Hilbert space-valued measurements
- ill-posed inverse problems
- ► Explicit estimates with
 - noisy data
 - compressible (and not sparse) u^{\dagger}
 - regularization with sampling: $\mathbf{m}=\mathbf{m}(\text{noise})$

Conclusions

Past

- ▶ Rigorous theory of compressed sensing for subsampled isometries (e.g. MRI)
- Empirical evidence for compressed sensing Radon transform

Conclusions

Past

- ▶ Rigorous theory of compressed sensing for subsampled isometries (e.g. MRI)
- Empirical evidence for compressed sensing Radon transform

Present

- ► Rigorous theory of compressed sensing for the sparse Radon transform
- Abstract theory of sample complexity

Conclusions

Past

- ▶ Rigorous theory of compressed sensing for subsampled isometries (e.g. MRI)
- Empirical evidence for compressed sensing Radon transform

Present

- ► Rigorous theory of compressed sensing for the sparse Radon transform
- Abstract theory of sample complexity

Future

Uni**Ge**

- ► Fan-beam geometry
- \blacktriangleright Wavelets \rightarrow shearlets, curvelets, etc.
- Generalisation to other ill-posed problems
- Nonlinear problems
- Compressed sensing with generative models