

Continuous generative neural networks

Giovanni S. Alberti MaLGa – Machine Learning Genoa Center Department of Mathematics University of Genoa

joint with Matteo Santacesaria and Silvia Sciutto (MaLGa, University of Genoa)

CGNNs in one sentence

Continuous Generative Neural Networks (CGNNs) are a machine learning architecture that represent elements in infinite-dimensional function spaces and provide Lipschitz stability for inverse problems.

CGNNs in one formula

A CGNN G: $\mathbb{R}^{40} \to L^2((0,1)^2)$ generating a 40-dim manifold of handwritten digits.

CGNNs in one formula

A CGNN G: $\mathbb{R}^{40} \to L^2((0,1)^2)$ generating a 40-dim manifold of handwritten digits.

$$z \sim (\mathcal{N}(0,1))^{40} \xrightarrow{16 \text{ times}} \begin{array}{c} 99370479\\ 9010011 \end{array}$$

Generative models, inverse problems and stability

Continuous Generative Neural Networks

X, Y Hilbert spaces, $\mathfrak{F} {:} \: X \to Y$ possibly nonlinear

X, Y Hilbert spaces, $\mathcal{F} {:} \: X \to Y$ possibly nonlinear

Key point: X and Y are typically infinite-dimensional function spaces

X, Y Hilbert spaces, $\mathcal{F}: X \to Y$ possibly nonlinear Key point: X and Y are typically infinite-dimensional function spaces Classical reconstruction

> Given $y = \mathcal{F}(x^{\dagger}) + \varepsilon$, determine x^{\dagger} by solving $\underset{x \in X}{\text{arg min}} \{ \|\mathcal{F}(x) - y\|^2 + R(x) \}.$

X, Y Hilbert spaces, $\mathcal{F}: X \to Y$ possibly nonlinear Key point: X and Y are typically infinite-dimensional function spaces Classical reconstruction

> Given $y = \mathcal{F}(x^{\dagger}) + \varepsilon$, determine x^{\dagger} by solving $\underset{x \in X}{\text{arg min}} \{ \|\mathcal{F}(x) - y\|^2 + R(x) \}.$

With a generative model

Determine $x^{\dagger} = G(z^{\dagger})$ by solving $\underset{z \in Z}{\arg \min\{\|\mathcal{F}(G(z)) - y\|^2\}},$ where $G: Z \to X$ is a generator.

Example with electrical impedance tomography¹

UniGe Marga ¹Seo-Kim-Jargal-Lee-Harrach, A learning-based method for solving ill-posed nonlinear inverse problems: a simulation study of Lung EIT, 2019

A general Lipschitz stability result²

Theorem (Alberti-Arroyo-S. 2022) If

UniGe MalGa

- + $M \subseteq X$ finite-dimensional manifold,
- and $\mathfrak{F}|_{\mathsf{M}}$ and $\mathfrak{F}'(x)|_{\mathsf{T}_x\mathsf{M}}$, for $x\in\mathsf{M},$ are injective,

A general Lipschitz stability result²

Theorem (Alberti-Arroyo-S. 2022) If

+ $M \subseteq X$ finite-dimensional manifold,

- and $\mathfrak{F}|_{\mathsf{M}}$ and $\mathfrak{F}'(x)|_{\mathsf{T}_x\mathsf{M}}$, for $x\in\mathsf{M},$ are injective,

then

UniGe MalGa

$$\|x_1-x_2\|_X\leqslant C\|\mathfrak{F}(x_1)-\mathfrak{F}(x_2)\|_Y,\qquad x_1,x_2\in M.$$

²G.S. Alberti, A. Arroyo, M. Santacesaria, Inverse Problems on Low Dimensional Manifolds, 2022 ⁷

The lower the dimension of the finite dimensional manifold $\ensuremath{\mathsf{M}}$, the better the stability.

The lower the dimension of the finite dimensional manifold M, the better the stability. M is often unknown.

The lower the dimension of the finite dimensional manifold M, the better the stability. M is often unknown.

We can learn and approximate M as $M\approx {\sf Im}(G),$ for a generator $G\colon Z\to X,$ with ${\sf dim}M\approx {\sf dim}Z.$

The lower the dimension of the finite dimensional manifold M, the better the stability. M is often unknown.

We can learn and approximate M as $M \approx Im(G)$, for a generator $G \colon Z \to X$, with dim $M \approx dim Z$.

Pros: higher stability, more accurate modeling, less computations. Cons: missing theory!

Outline

Generative models, inverse problems and stability

Continuous Generative Neural Networks

How to build a CGNN: the discrete case

Many architectures: fully connected, convolutional, transformers, etc.

How to build a CGNN: the discrete case

Many architectures: fully connected, convolutional, transformers, etc.

Fully Connected layer

$$y = \sigma(Fx + b)$$

How to build a CGNN: the discrete case

Many architectures: fully connected, convolutional, transformers, etc.

Fully Connected layer

$$y = \sigma(Fx + b)$$

Convolutional layer (filters t_i^k)

$$(f_{out})_k = \sigma \left(\sum_{i=1}^c (f_{in})_i *_s t_i^k + b^k \right)$$

Strided continuous convolution

Strided continuous convolution

- + Ψ is a continuous convolution
- + $\cdots \subseteq V_{j-1} \subseteq V_j \subseteq V_{j+1} \subseteq \cdots$: scale spaces of a wavelet multiresolution analysis

Strided continuous convolution

+ Ψ is a continuous convolution

+ $\cdots \subseteq V_{j-1} \subseteq V_j \subseteq V_{j+1} \subseteq \cdots$: scale spaces of a wavelet multiresolution analysis

Easy implementation. Discrete convolution (almost) for the wavelet coefficients

Discrete and Continuous Generator structure in 1D³

Discrete Generator

 $G: \mathbb{R}^{\eta} \xrightarrow{F \cdot +b} (\mathbb{R}^{\alpha_{1}})^{c_{1}} \xrightarrow{\sigma} (\mathbb{R}^{\alpha_{1}})^{c_{1}}$ $\xrightarrow{\Psi_{2}} (\mathbb{R}^{\alpha_{2}})^{c_{2}} \xrightarrow{\sigma} (\mathbb{R}^{\alpha_{2}})^{c_{2}} \dots$ $\dots \xrightarrow{\Psi_{L}} \mathbb{R}^{\alpha_{L}} \xrightarrow{\sigma} \mathbb{R}^{\alpha_{L}}$ $c_{1} > c_{2} > \dots > c_{L}$ $\alpha_{1} < \alpha_{2} < \dots < \alpha_{L}$

³J. Bruna, S. Mallat, Invariant Scattering Convolution Networks, 2012 N. Kovachki et al., Neural Operator: Learning Maps Between Function Spaces, 2021 A. Habring, M. Holler, A generative variational model for inverse problems in imaging, 2022 A.E. Khorashadizadeh, et al., FunkNN: Neural Interpolation for Functional Generation, 2022

Discrete and Continuous Generator structure in 1D³

Discrete Generator

$$\begin{split} \mathbf{G} \colon \mathbb{R}^{\eta} \xrightarrow{\mathbf{F} \cdot +\mathbf{b}} (\mathbb{R}^{\alpha_{1}})^{c_{1}} & \xrightarrow{\sigma} (\mathbb{R}^{\alpha_{1}})^{c_{1}} & \mathbf{G} \colon \mathbb{R}^{\eta} \xrightarrow{\mathbf{F} \cdot +\mathbf{b}} (V_{j_{1}})^{c_{1}} & \xrightarrow{\sigma} (V_{j_{1}})^{c_{1}} \\ & \xrightarrow{\frac{\Psi_{2}}{\operatorname{conv}}} (\mathbb{R}^{\alpha_{2}})^{c_{2}} & \xrightarrow{\sigma} (\mathbb{R}^{\alpha_{2}})^{c_{2}} \dots \\ & \dots & \xrightarrow{\frac{\Psi_{L}}{\operatorname{conv}}} \mathbb{R}^{\alpha_{L}} & \xrightarrow{\sigma} \mathbb{R}^{\alpha_{L}} & \cdots & \xrightarrow{\frac{\Psi_{L}}{\operatorname{conv}}} V_{j_{L}} \xrightarrow{\sigma} (V_{j_{2}})^{c_{2}} \dots \\ & c_{1} > c_{2} > \dots > c_{L} & c_{1} > c_{2} > \dots > c_{L} \\ & \alpha_{1} < \alpha_{2} < \dots < \alpha_{L} & j_{1} < j_{2} < \dots < j_{L} \end{split}$$

³ J. Bruna, S. Mallat, Invariant Scattering Convolution Networks, 2012 N. Kovachki et al., Neural Operator: Learning Maps Between Function Spaces, 2021 A. Habring, M. Holler, A generative variational model for inverse problems in imaging, 2022 A.E. Khorashadizadeh, et al., FunkNN: Neural Interpolation for Functional Generation, 2022

Continuous Generator

Continuous Generator structure in 1D: Formalization

$$\begin{split} \mathbf{G} \colon \mathbb{R}^{\eta} \xrightarrow{\mathbf{F} \cdot +\mathbf{b}} (\mathbf{V}_{j_{1}})^{\mathbf{c}_{1}} \xrightarrow{\sigma} (\mathbf{L}^{2}([0,1]))^{\mathbf{c}_{1}} \xrightarrow{\mathbf{P}_{(\mathbf{V}_{j_{1}})^{\mathbf{c}_{1}}}}{\mathrm{proj.}} (\mathbf{V}_{j_{1}})^{\mathbf{c}_{1}} \\ \xrightarrow{\Psi_{2}} (\mathbf{L}^{2}([0,1]))^{\mathbf{c}_{2}} \xrightarrow{\mathbf{P}_{(\mathbf{V}_{j_{2}})^{\mathbf{c}_{2}}}}{\mathrm{proj.}} (\mathbf{V}_{j_{2}})^{\mathbf{c}_{2}} \xrightarrow{\sigma} (\mathbf{L}^{2}([0,1]))^{\mathbf{c}_{2}} \\ \xrightarrow{\frac{\mathbf{P}_{(\mathbf{V}_{j_{2}})^{\mathbf{c}_{2}}}}{\mathrm{proj.}} (\mathbf{V}_{j_{2}})^{\mathbf{c}_{2}} & \dots & \xrightarrow{\Psi_{L}} \mathbf{L}^{2}([0,1]) \xrightarrow{\mathbf{P}_{\mathbf{V}_{j_{L}}}}{\mathrm{proj.}} \mathbf{V}_{j_{L}} \\ \xrightarrow{\sigma} \xrightarrow{\mathbf{non lin.}} \mathbf{L}^{2}([0,1]) \xrightarrow{\frac{\mathbf{P}_{\mathbf{V}_{j_{L}}}}{\mathrm{proj.}} \mathbf{V}_{j_{L}} \end{split}$$

Main features

Discretization invariance

UniGe Makea⁴ Puthawala, Kothari, Lassas, Dokmanić, de Hoop, Globally injective ReLU networks, 2020 Hagemann, Neumayer, Stabilizing invertible neural networks using mixture models, 2021

Main features

Discretization invariance

Injectivity⁴

Theorem (G.S.Alberti, M. S., S. Sciutto, 2022)

Assume F injective, σ injective and linear independence of convolutional filters. Then G $\,$ is injective

UniGe Maria ⁴Puthawala, Kothari, Lassas, Dokmanić, de Hoop, Globally injective ReLU networks, 2020 Hagemann, Neumayer, Stabilizing invertible neural networks using mixture models, 2021

Main features

Discretization invariance

Injectivity⁴

Theorem (G.S.Alberti, M. S., S. Sciutto, 2022)

Assume F injective, σ injective and linear independence of convolutional filters. Then G $\,$ is injective

Lipschitz stability for inverse problems

Theorem (G.S.Alberti, M. S., S. Sciutto, 2022)

Assume G as above, set Im(G) = M. Then

$$\|\mathbf{x} - \mathbf{y}\|_{\mathbf{X}} \leq C \|\mathfrak{F}(\mathbf{x}) - \mathfrak{F}(\mathbf{y})\|_{\mathbf{Y}}, \qquad \mathbf{x}, \mathbf{y} \in \mathbf{M}.$$

UniGe | Marga ⁴Puthawala, Kothari, Lassas, Dokmanić, de Hoop, Globally injective ReLU networks, 2020 Hagemann, Neumayer, Stabilizing invertible neural networks using mixture models, 2021

Conclusions

Limitations

- Training protocols (we used variational autoencoders)
- Architecture (convolutional; we only used the approximation coefficients)
- Manifold learning (only one chart)

Conclusions

Limitations

- Training protocols (we used variational autoencoders)
- Architecture (convolutional; we only used the approximation coefficients)
- Manifold learning (only one chart)

Future work

- Multiple generators for nontrivial topologies (with J. Hertrich)
- Different architectures
- How does the training affect the reconstruction performances?

[Continuous Generative Neural Networks, preprint arXiv:2205.14627]

