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CGNNs in one sentence

Continuous Generative Neural Networks (CGNNs) are a machine
learning architecture that represent elements in infinite-dimensional
function spaces and provide Lipschitz stability for inverse problems.

2



CGNNs in one formula

A CGNN G : R40 → L2((0, 1)2) generating a 40-dim manifold of handwritten digits.

z ∼ (N(0, 1))40 16 times7−−−−→

3



CGNNs in one formula

A CGNN G : R40 → L2((0, 1)2) generating a 40-dim manifold of handwritten digits.

z ∼ (N(0, 1))40 16 times7−−−−→

3



Outline

Generative models, inverse problems and stability

Continuous Generative Neural Networks



Generative models for inverse problems

X, Y Hilbert spaces, F : X → Y possibly nonlinear

Key point: X and Y are typically infinite-dimensional function spaces

Classical reconstruction

Given y = F(x†) + ε, determine x† by solving

arg min
x∈X

{∥F(x) − y∥2 + R(x)}.

With a generative model

Determine x† = G(z†) by solving

arg min
z∈Z

{∥F(G(z)) − y∥2},

where G : Z → X is a generator.
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Example with electrical impedance tomography1

Classical approach:

y = F(x)

With Generative models:

y = F(G(z))

1Seo-Kim-Jargal-Lee-Harrach, A learning-based method for solving ill-posed nonlinear inverse
problems: a simulation study of Lung EIT, 2019 6



A general Lipschitz stability result2

Theorem (Alberti-Arroyo-S. 2022)

If

• M ⊆ X finite-dimensional manifold,
• and F|M and F ′(x)|TxM, for x ∈ M, are injective,

then
∥x1 − x2∥X ⩽ C∥F(x1) − F(x2)∥Y , x1, x2 ∈ M.

2G.S. Alberti, A. Arroyo, M. Santacesaria, Inverse Problems on Low Dimensional Manifolds, 2022 7
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Learning the manifold M

The lower the dimension of the finite dimensional manifold M, the better the
stability.

M is often unknown.

We can learn and approximate M as M ≈ Im(G), for a generator G : Z → X, with
dimM ≈ dimZ.

Pros: higher stability, more accurate modeling, less computations.

Cons: missing theory!

8



Learning the manifold M

The lower the dimension of the finite dimensional manifold M, the better the
stability. M is often unknown.

We can learn and approximate M as M ≈ Im(G), for a generator G : Z → X, with
dimM ≈ dimZ.

Pros: higher stability, more accurate modeling, less computations.

Cons: missing theory!

8



Learning the manifold M

The lower the dimension of the finite dimensional manifold M, the better the
stability. M is often unknown.

We can learn and approximate M as M ≈ Im(G), for a generator G : Z → X, with
dimM ≈ dimZ.

Pros: higher stability, more accurate modeling, less computations.

Cons: missing theory!

8



Learning the manifold M

The lower the dimension of the finite dimensional manifold M, the better the
stability. M is often unknown.

We can learn and approximate M as M ≈ Im(G), for a generator G : Z → X, with
dimM ≈ dimZ.

Pros: higher stability, more accurate modeling, less computations.

Cons: missing theory!

8



Outline

Generative models, inverse problems and stability

Continuous Generative Neural Networks



How to build a CGNN: the discrete case

Many architectures: fully connected, convolutional, transformers, etc.

Fully Connected layer

y = σ(Fx+ b)

Convolutional layer (filters tki )

(fout)k = σ

(
c∑

i=1

(fin)i ∗s tki + bk

)
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Strided continuous convolution

Discrete case

Continuous case
Vj

Ψ−−−→
conv.

L2([0, 1])
PVj−1−−−−→

proj.
Vj−1,

• Ψ is a continuous convolution
• · · · ⊆ Vj−1 ⊆ Vj ⊆ Vj+1 ⊆ · · · : scale spaces of a wavelet multiresolution analysis

Easy implementation. Discrete convolution (almost) for the wavelet coefficients

11



Strided continuous convolution

Discrete case

Continuous case
Vj

Ψ−−−→
conv.

L2([0, 1])
PVj−1−−−−→

proj.
Vj−1,

• Ψ is a continuous convolution
• · · · ⊆ Vj−1 ⊆ Vj ⊆ Vj+1 ⊆ · · · : scale spaces of a wavelet multiresolution analysis

Easy implementation. Discrete convolution (almost) for the wavelet coefficients

11



Strided continuous convolution

Discrete case

Continuous case
Vj

Ψ−−−→
conv.

L2([0, 1])
PVj−1−−−−→

proj.
Vj−1,

• Ψ is a continuous convolution
• · · · ⊆ Vj−1 ⊆ Vj ⊆ Vj+1 ⊆ · · · : scale spaces of a wavelet multiresolution analysis

Easy implementation. Discrete convolution (almost) for the wavelet coefficients

11



Discrete and Continuous Generator structure in 1D 3

Discrete Generator

G : Rη F · +b−−−−→
f.c.

(Rα1)c1 σ−−−−→
non lin.

(Rα1)c1

Ψ2−−−→
conv.

(Rα2)c2 σ−−−−→
non lin.

(Rα2)c2 ...

... ΨL−−−→
conv.

RαL
σ−−−−→

non lin.
RαL

c1 > c2 > ... > cL

α1 < α2 < ... < αL

Continuous Generator

G : Rη F · +b−−−−→
f.c.

(Vj1)
c1 σ−−−−→

non lin.
(Vj1)

c1

Ψ2−−−→
conv.

(Vj2)
c2 σ−−−−→

non lin.
(Vj2)

c2 ...

... ΨL−−−→
conv.

VjL
σ−−−−→

non lin.
VjL

c1 > c2 > ... > cL

j1 < j2 < ... < jL

3J. Bruna, S. Mallat, Invariant Scattering Convolution Networks, 2012
N. Kovachki et al., Neural Operator: Learning Maps Between Function Spaces, 2021
A. Habring, M. Holler, A generative variational model for inverse problems in imaging, 2022
A.E. Khorashadizadeh, et al., FunkNN: Neural Interpolation for Functional Generation, 2022 12
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Continuous Generator structure in 1D: Formalization

G : Rη F · +b−−−−→
f.c.

(Vj1)
c1 σ−−−−→

non lin.
(L2([0, 1]))c1

P(Vj1 )c1

−−−−−→
proj.

(Vj1)
c1

Ψ2−−−→
conv.

(L2([0, 1]))c2
P(Vj2 )c2

−−−−−→
proj.

(Vj2)
c2 σ−−−−→

non lin.
(L2([0, 1]))c2

P(Vj2 )c2

−−−−−→
proj.

(Vj2)
c2 ... ΨL−−−→

conv.
L2([0, 1])

PVjL−−−→
proj.

VjL

σ−−−−→
non lin.

L2([0, 1])
PVjL−−−→
proj.

VjL
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Main features

Discretization invariance

Injectivity4

Theorem (G.S.Alberti, M. S., S. Sciutto, 2022)

Assume F injective, σ injective and linear independence of convolutional filters.
Then G is injective

Lipschitz stability for inverse problems
Theorem (G.S.Alberti, M. S., S. Sciutto, 2022)

Assume G as above, set Im(G) = M. Then

∥x− y∥X ⩽ C∥F(x) − F(y)∥Y , x,y ∈ M.

4Puthawala, Kothari, Lassas, Dokmanić, de Hoop, Globally injective ReLU networks, 2020
Hagemann, Neumayer, Stabilizing invertible neural networks using mixture models, 2021 14
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Conclusions

Limitations

• Training protocols (we used variational autoencoders)
• Architecture (convolutional; we only used the approximation coefficients)
• Manifold learning (only one chart)

Future work

• Multiple generators for nontrivial topologies (with J. Hertrich)
• Different architectures
• How does the training affect the reconstruction performances?

[Continuous Generative Neural Networks, preprint arXiv:2205.14627]
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