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Sampling

▶ Function f ∈ L2(D)

▶ Sampling points tl ∈ D, l = 1, . . . ,m
▶ Sampling problem:

(f(tl))
m
l=1 ; f

▶ Need assumptions on f
▶ Classically, f isω-bandlimited (linear condition):

m ≳ ω
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Inverse problems

▶ H (e.g. H = L2(Ω)): Hilbert space of inputs
▶ F : H → L2(D;H ′) linear forward map (compact)

▶ Inverse problem:
F(u) ; u

Examples
1. Deconvolution (with Bessel operator):

F = (I− ∆)−b/2 : L2(R2) → L2(R2), F(u) = κb ∗ u

where b > 2 and κb := F−1
(
(1 + | · |2)−b/2

)
2. Radon transform1:

R : L2(B1) → L2(S1;L2(−1, 1)), (Ru)(θ) =

∫
θ⊥
u(y+ · θ)dy ∈ L2(−1, 1)

1Natterer, The Mathematics of Computerized Tomography, 2001
Quinto, An Introduction to X-ray tomography and Radon Transforms, 2006 6
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Sampling in inverse problems

▶ F : H → L2(D;H ′) linear forward map
▶ Sampling points tl ∈ D, l = 1, . . . ,m
▶ Inverse problems with sampling:

(Ftlu := (Fu)(tl))
m
l=1 ; u

Examples
1. Deconvolution: F : L2(R2) → L2(R2)

((κb ∗ u)(tl))ml=1 ; u

2. Radon transform: R : L2(B1) → L2(S1;L2(−1, 1))

(Rθl
u)ml=1 ; u
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The sparse Radon transform

Rθu(s) =

∫
θ⊥
u(y+ sθ)dy, θ = θ1
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The sparse Radon transform

Rθu(s) =
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θ⊥
u(y+ sθ)dy, θ = θ2
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The sparse Radon transform

Rθu(s) =

∫
θ⊥
u(y+ sθ)dy, θ = θ3
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The sparse Radon transform

Rθu(s) =

∫
θ⊥
u(y+ sθ)dy, θ = θ4
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The sparse Radon transform

(Ru(θ1, ·), . . . ,Ru(θm, ·)) , θ1, . . . , θm ∈ S1
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Sampling in inverse problems

▶ F : H → L2(D;H ′) linear forward map
▶ Sampling points tl ∈ D, l = 1, . . . ,m
▶ Inverse problems with sampling:

(Ftlu)
m
l=1 ; u

Need prior assumptions:
▶ Linear: u bandlimited (or, more generally, smooth) is not realistic in most cases
▶ Nonlinear2: u sparse...

2R. A. DeVore, Nonlinear approximation, 1998 9
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Sparsity

▶ {ϕn}n orthonormal/Riesz basis of H

▶ u ∈ H is s-sparse if
#{n : ⟨u,ϕn⟩ ≠ 0} ⩽ s

▶ compare with a linear condition:

{n : ⟨u,ϕn⟩ ≠ 0} ⊆ {1, . . . , s}

Figure: Important Genoese Figure: Wavelet coefficients
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{n : ⟨u,ϕn⟩ ≠ 0} ⊆ {1, . . . , s}

Figure: Important Genoese Figure: Wavelet coefficients

10



Sparsity

▶ {ϕn}n orthonormal/Riesz basis of H
▶ u ∈ H is s-sparse if

#{n : ⟨u,ϕn⟩ ≠ 0} ⩽ s
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Main goal

Problem:
(Ftlu)

m
l=1 ; u

The main goal is to understand

▶ how to choose the samples t1, . . . , tm ∈ D

▶ and how many are needed (m = ?)
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An example: Magnetic Resonance Imaging

Measurements: F = Fourier transform
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Compressed sensing3

Setup:

▶ Unknown: u† ∈ CM is s-sparse
▶ {ψt}t orthonormal basis (MRI: Fourier)
▶ Random subsampling: tl ∈ {1, . . . ,M} chosen uniformly at random

Problem:
(⟨u†,ψtl⟩)ml=1 ; u†

with
m ≳ s

3E. J. Candès, J. K. Romberg, T. Tao. Stable signal recovery from incomplete and inaccurate
measurements. Comm. Pure Appl. Math. 59(8) (2006), 1207-1223
D. L. Donoho. Compressed sensing. IEEE Trans. Inf. Theory, 52(4) (2006), 1289–1306 14
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Coherence

In general, sparsity alone is not enough

Suppose we have a 1-sparse vector u† ∈ RM (M = 8) w.r.t. ϕn = δn
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Coherence

In general, sparsity alone is not enough
Suppose we have a 1-sparse vector u† ∈ RM (M = 8) w.r.t. ϕn = δn
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Coherence

In general, sparsity alone is not enough
Suppose we have a 1-sparse vector u† ∈ RM (M = 8) w.r.t. ϕn = δn
Consider another sensing system (ψt)t; we countm = 1 + log2M
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Coherence

This feature is measured by the coherence between the sparsifying dictionary and
the sensing system

B =
√
M · max

n,t
|⟨ϕn,ψt⟩|
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Coherence

B =
√
M · max |⟨ϕn,ψt⟩|

Figure: First example: B =
√
M
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Coherence

B =
√
M · max |⟨ϕn,ψt⟩|

Figure: Second example: B = 1
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Recovery estimate4

▶ u† ∈ CM unknown
▶ u† is s-sparse w.r.t. {ϕn}

M
n=1

▶ minimization problem

û ∈ arg min
u∈CM

∥(⟨u,ϕn⟩)n∥1 : ⟨u,ψtl⟩ = ⟨u†,ψtl⟩, l = 1, . . . ,m

Theorem
If

m ≳ B2s · log factors

then

û = u†

with overwhelming probability.

4S. Foucart, H. Rauhut. A mathematical introduction to compressive sensing. 2013 17
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û ∈ arg min
u∈CM

∥(⟨u,ϕn⟩)n∥1 : ⟨u,ψtl⟩ = ⟨u†,ψtl⟩, l = 1, . . . ,m

Theorem
If

m ≳ B2s · log factors

then
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Setting5

▶ H = L2(Ω) withΩ ⊂ R2 bounded
▶ (ϕj,n)j,n: sufficiently nice wavelet basis
▶ u† is s-sparse w.r.t. the wavelet basis

Forward map

u 7−→ (Ftlu)
m
l=1

not a subsampled isometry, but a subsampled compact operator

5B. Adcock, A. C. Hansen, C. Poon, B. Roman, Breaking the coherence barrier: A new theory for
compressed sensing, Forum Math. Sigma, 2017.
E. Herrholz, G. Teschke, Compressive sensing principles and iterative sparse recovery for in-
verse and ill-posed problems, Inverse Probl., 2010 19
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Difficulties with the Radon transform

▶ From Jørgensen, Coban, Lionheart, McDonald and Withers, 2017:
Compressive sensing connects the critical number of projections to the image
sparsity, but does not cover CT. Empirical results suggest a similar connection.

▶ From Hansen, 2017:
We used simulations studies to provide a foundation for the use of sparsity in

CT where, unlike compressed sensing, it is not possible to give rigorous proofs.

Key tools:
1. Quasi-diagonalization of F
2. Relative coherence

20
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Quasi-diagonalization

▶ u† is s-sparse

– what about Fu†?
▶ smoothing operators F:

∥Fu∥L2 ≍ ∥u∥H−b

▶ Littlewood-Paley properties of wavelets6:

∥u∥2
H−b ≍

∑
j,n

2−2bj|⟨u,ϕj,n⟩|2

▶ quasi-diagonalization property:

∥Fu∥2
L2 ≍

∑
j,n

2−2bj|⟨u,ϕj,n⟩|2

▶ pseudo-sparsity property on Fu†: use compressed sensing methods

6S. Mallat. A Wavelet Tour of Signal Processing. The Sparse Way, 2009 21
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Relative coherence

What is the analogous concept of coherence in this case?

Classically defined as

B =
√
M sup

n,t
|Ft(ϕn)|

when we sampled with respect to the uniform probability on [M]
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Optimizing the probability density g(t)

The optimal choice for g(t) (minimizing Brel) depends on the decay in t of |Ftϕj,n|

Examples
1. Deconvolution for b > 2:

|
(
(I− ∆)−b/2ϕj,n

)
(t)| ≲

e−Cb|d(t,Ω)|

2(b−1)j ⇒ g(t) ∝ e−Cb|d(t,Ω)|

2. The Radon transform:

∥Rθϕj,n∥L2([−1,1]) ≲ 1 ⇒ g(θ) =
1
2π
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Main abstract result7

Theorem

▶ Unknown: u† ∈ L2(Ω)

▶ Sparsity: u† is s-sparse w.r.t. the wavelet basis (ϕj,n)j,n
▶ Measurements: t1, . . . , tm ∈ D chosen i.i.d. w.r.t. g(t)dt with

m ≳ B2
rels · log factors

▶ Minimization problem:

û ∈ arg min
u∈H

∥(⟨u,ϕj,n⟩)j,n∥1,w : Ftlu = Ftlu
†, l = 1, . . . ,m

Then
û = u†

with overwhelming probability.

7G.S.A., A. Felisi, M. Santacesaria, S.I. Trapasso, JEMS, to appear 25
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A corollary for the Radon transform8

(
Ru†(θ1, ·), . . . ,Ru†(θm, ·)

)
∈ L2(−1, 1)m −→ u† ∈ L2(B1)

Theorem
▶ Sparsity: unknown u† ∈ L2(B1) is s-sparse wrt an ONB of wavelets (ϕj,n)j,n
▶ Measurements: θ1, . . . , θm ∈ [0,π] chosen uniformly at random with

m ≳ s · log factors

▶ Minimization problem:

û ∈ arg min
u

∥Φu∥1,w : Rθl
u = Rθl

u†, l = 1, . . . ,m

Then, with high probability,
û = u†

8G.S.A., A. Felisi, M. Santacesaria, S.I. Trapasso, JEMS, to appear 26
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Conclusions

Past
▶ Theory of CS for random matrices and subsampled isometries (e.g. MRI)
▶ Empirical evidence for compressed sensing Radon transform

Present
▶ Abstract theory of sample complexity for inverse problems
▶ Rigorous theory of compressed sensing for the sparse Radon transform

Future
▶ Wavelets → shearlets, curvelets, etc.
▶ Generalisation to other ill-posed problems, possibly nonlinear
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