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Inverse problems

Linear inverse problems
Recover x ∈ X from the noisy measurement y ∈ Y :

y = Ax+ ε

▶ X,Y : separable Hilbert spaces
▶ A : X → Y : bounded linear injective operator, A−1 possibly unbounded
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Inverse problems

Linear inverse problems
Recover x ∈ X from the noisy measurement y ∈ Y :

y = Ax+ ε

▶ X,Y : separable Hilbert spaces
▶ A : X → Y : bounded linear injective operator, A−1 possibly unbounded

Denoising - A = Id: identity operator
Unknown to be recovered, x Observed quantity, y
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Inverse problems

Linear inverse problems
Recover x ∈ X from the noisy measurement y ∈ Y :

y = Ax+ ε

▶ X,Y : separable Hilbert spaces
▶ A : X → Y : bounded linear injective operator, A−1 possibly unbounded

Image deblurring - A: convolution with a smooth kernel
Unknown to be recovered, x Observed quantity, y
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Inverse problems

Linear inverse problems
Recover x ∈ X from the noisy measurement y ∈ Y :

y = Ax+ ε

▶ X,Y : separable Hilbert spaces
▶ A : X → Y : bounded linear injective operator, A−1 possibly unbounded

Computed Tomography - A: Radon transform
Unknown to be recovered, x Observed quantity, y
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Regularization

Regularization - optimization problem
Given y = Ax+ ε, solve min

x∈X
{dY (Ax, y) + J(x)}

▶ dY (Ax, y) data fidelity term, e.g. 1
2
∥Ax− y∥2Y

▶ J : X → R regularization term

How to choose the regularization functional? 1

J should encode and promote prior information available on the solution

Ex.1) Tikhonov regularization: J(x) = λ∥x∥2X
Ex.2) Sparsity-promoting regularization: J(x) = λ∥x∥1 = λ∥{⟨x, φi⟩X}i∥ℓ1
Ex.3) Total Variation: J(x) = λ∥∇x∥1
Ex.4) A neural network (e.g. unrolling, plug-and-play, adversarial regularizers, etc.)

1Classical theory: [Engl, Hanke, Neubauer, 1996],
Data-driven methods: [JC De los Reyes et al, 2017], [Calatroni et al, 2017], [Lunz et al, 2018], [Arridge et al., 2019], [Li
et al., 2020], [Aspri et al. 2021], [De Hoop et al., 2021], [Kabri et al., 2024]
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This talk State of the art

2Joke stolen from Ernesto De Vito, talking about kernel methods in machine learning 3/23



Disclaimer2

This talk State of the art

2Joke stolen from Ernesto De Vito, talking about kernel methods in machine learning 3/23



Disclaimer2

This talk State of the art

2Joke stolen from Ernesto De Vito, talking about kernel methods in machine learning 3/23



Disclaimer2

This talk State of the art

2Joke stolen from Ernesto De Vito, talking about kernel methods in machine learning 3/23



Outline

Learning the optimal generalized Tikhonov regularizer

Learning the optimal ℓ1 regularizer

Sparse regularization via Gaussian mixtures



Generalized Tikhonov regularization

Generalized Tikhonov regularization

Rh,B(y) = argmin
x∈X

{
dY (Ax, y) + ∥B−1(x− h)∥2X

}
where h ∈ X and B : X → X is positive and bounded

Examples:
▶ B−1 = λ1/2 Id, h = 0: Tikhonov regularization ⇝ x has small norm
▶ B−1 = λ1/2 Id, h ∈ X ⇝ x is a small variation of a reference object h
▶ B−1 = ∆s: Sobolev regularization ⇝ enforces smoothness of x
▶ B−1 = arbitrary differential operator ⇝ enforces arbitrary smoothness of x

Learning the regularizer: key questions

1. What are the optimal B and h?
2. How can we learn them? How large should the training set be?
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Statistical setting: finite dimension

Model for x: square-integrable random vector in RN ;
mean: µx ∈ RN ; covariance: Σx ∈ RN×N invertible.

Model for ε: square-integrable random vector in RN , ε ⊥ x;
mean: 0 ∈ RN ; covariance: Σε ∈ RN×N invertible.

Regularizer:
Rh,B(y) = argmin

x∈X

{
∥Σ−1/2

ε (Ax− y)∥2Y + ∥B−1(x− h)∥2X
}

⇒

Regularizer – explicit formula:

Rh,B(y) = (A∗Σ−1
ε A+B−∗B−1)−1(A∗Σ−1

ε y +B−∗B−1h)

= h+B∗BA∗(AB∗BA∗ +Σε)
−1(y −Ah)
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Statistical setting: Infinite-dimension

Model for x: square-integrable random variable in X ;
mean: µx ∈ X ; covariance: Σx : X → X trace-class, injective operator.

Model for ε: square-integrable random variable in Y , ε ⊥ x;
mean: 0 ∈ Y ; covariance: Σε : Y → Y trace-class, injective operator.
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mean: µx ∈ X ; covariance: Σx : X → X trace-class, injective operator.

Model for ε: square-integrable random variable in Y , ε ⊥ x;
mean: 0 ∈ Y ; covariance: Σε : Y → Y trace-class, injective operator.
⇒ Problem: white noise not included! (Σε = Id is not trace-class)
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Statistical setting: Infinite-dimension

Model for x: square-integrable random variable in X ;
mean: µx ∈ X ; covariance: Σx : X → X trace-class, injective operator.

Model for ε: zero-mean random process on Y , ε ⊥ x;
mean: 0 ∈ K∗; covariance: ι∗ ◦ Σε ◦ ι : K∗ → K trace class, injective.

Gelfand triple:
K

ι
↪→ Y

ι∗

↪→ K∗
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Statistical setting: Infinite-dimension

Model for x: square-integrable random variable in X ;
mean: µx ∈ X ; covariance: Σx : X → X trace-class, injective operator.
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⟨y, v⟩K∗×K = ⟨Ax, v⟩Y + ⟨ε, v⟩K∗×K ∀v ∈ K

Regularizer: desired form

Rh,B(y) = argmin
x∈X

∥Σ−1/2
ε (Ax− y)∥2Y + ∥B−1(x− h)︸ ︷︷ ︸

x′

∥2X


Regularizer: well-defined form - assume compatibility condition Im(AB)⊂ Im(Σει)

Rh,B(y) = h+Bx̂′

x̂′ = argmin
x′∈X

{
∥Σ−1/2

ε ABx′∥2Y − 2⟨y − ι∗Ah, (Σει)
−1ABx′⟩K∗×K + ∥x′∥2X

}
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The optimal regularizer

Mean squared error/expected loss:

L(h,B) = E(x,ε)

[
∥Rh,B(Ax+ ε)− x∥2X

]

Theorem [A, De Vito, Lassas, Ratti, Santacesaria]3

Let Σx satisfy Im(AΣ
1/2
x ) ⊆ Im(Σει) (compatibility). Then (h⋆, B⋆) is a global minimizer of

min
h,B

L(h,B)

if and only if
h⋆ = µx and (B⋆)2 = Σx.

Remarks
▶ The optimal regularization parameters B⋆ = Σ

1/2
x and h⋆ = µx are independent of A and ϵ

▶ Expression of the optimal regularizer R⋆ = Rh⋆,B⋆ (LMMSE estimator):

R⋆(y) = µx +ΣxA
∗(ι∗(AΣxA

∗ +Σε))
−1(y − ι∗Aµx)

3Learning the optimal Tikhonov regularizer for inverse problems, NeurIPS 2021 7/23
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Learning the regularizer: two approaches

Goal: given a sample z={(xj , yj)}mj=1∈(X ×K∗)m, approximate (h⋆, B⋆)

Supervised learning: find (ĥS , B̂S) minimizing the empirical risk L̂,

(ĥS , B̂S) = argmin
(h,B)∈Θ

L̂(h,B), L̂(h,B) =
1

m

m∑
j=1

∥Rh,B(yj)− xj∥2X ,

where Θ is a suitable subset of X × L(X,X).

Unsupervised learning: since h⋆ = µx and B⋆ = Σ
1/2
x , use only the sample {xj}mj=1 to estimate

ĥU = µ̂x =
1

m

m∑
j=1

xj , B̂U = Σ̂x

1/2
, Σ̂x =

1

m

m∑
j=1

(xj − µ̂x)⊗ (xj − µ̂x).

How to evaluate the quality of (ĥ, B̂)?

Bounds on the excess error: L(ĥ, B̂)− L(h⋆, B⋆)
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8/23



Learning the regularizer: two approaches

Goal: given a sample z={(xj , yj)}mj=1∈(X ×K∗)m, approximate (h⋆, B⋆)
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Supervised learning - assumptions and main result

(h∗, B∗) = argmin
(h,B)∈Θ

Ex,y[∥Rh,B(y)− x∥2X ]︸ ︷︷ ︸
L(h,B)

, (ĥS , B̂S) = argmin
(h,B)∈Θ

m∑
j=1

∥Rh,B(yj)− xj∥2X

1. Θ ⊂ H ×HS(H∗, H) ⊂ X × L(X,X) is compact.
Example: X = L2(Td), H = Hσ(Td) Sobolev space, smoothness σ

2. quantify compactness via s (Sobolev example: s = σ/d)

3. (h⋆, B⋆) = (µx,Σ
1/2
x ) ∈ Θ
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(
c1 + c2

√
τ√

m

)1− 1
2s′+1

.

4Learning the optimal Tikhonov regularizer for inverse problems, NeurIPS 2021 9/23
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A denoising problem - experimental setup

▶ X = Y = L2(T1), T1 = R/Z the one-dimensional torus
▶ A = Id: determine a signal x from y = x+ ε

▶ x ∼ N(µx,Σx), µx = 1− |2x− 1|, Σx: smooth convolution operator
▶ ε: white noise process, with zero mean and Σε = σ2I

▶ Discretization: X = RN (N dimensional 1D-pixel basis)
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Experiment 1: verify the generalization bounds

(a) (b) (c)

Decay in m of the excess risks

|L(θ̂S)− L(θ⋆)| and |L(θ̂U )− L(θ⋆)|

with Gaussian variable x and
(a) Gaussian white noise ε
(b) uniform white noise ε
(c) white noise ε whose wavelet transform has uniform distribution

12/23



Experiment 2: dimension-independence

(a) (b) (c)
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Outline

Learning the optimal generalized Tikhonov regularizer

Learning the optimal ℓ1 regularizer

Sparse regularization via Gaussian mixtures



ℓ1 regularization

Analysis formulation

min
x∈X

{
1

2
∥Ax− y∥2Y + ∥Φx∥ℓ1

}

⇝

Synthesis formulation

min
u∈U⊂ℓ1

{
1

2
∥ABu− y∥2Y + ∥u∥ℓ1

}

where
x = Bu, B : ℓ2 → X bounded

Examples
▶ canonical/pixel-based basis: few activated pixels
▶ Fourier basis: band-limited functions, smooth functions
▶ wavelet bases: isolated discontinuities in some points
▶ curvelet/shearlet frames: isolated discontinuities along curves

Goal: learn the optimal choice of B based on sample data6

6H. Huang, E. Haber, and L. Horesh, Optimal estimation of ℓ1-regularization prior from a regularized empirical
Bayesian risk standpoint, Inverse Probl. Imaging, 2012 14/23
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Sparsity promotion and ℓ1 - assumptions

⊖ No explicit formula for the solution of the inner problem ûB

⊖ No characterization of the optimal choice B

⊖ No straightforward unsupervised approach
⊕ Supervised approach: extend the Tikhonov approach, based on stability + covering

Our assumptions

a) A : X → Y is bounded and compact
b) Enriched compatibility: Im(A) ⊂ Im(Σε) and Σ−1

ε A is compact
c) x, ε sub-Gaussian random variables
d) minimize over a compact set

B ⊆ Badm := {B : ℓ2 → X bdd : AB satisfies the finite basis injectivity (FBI)}

15/23
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⊖ No characterization of the optimal choice B

⊖ No straightforward unsupervised approach
⊕ Supervised approach: extend the Tikhonov approach, based on stability + covering

Our assumptions

a) A : X → Y is bounded and compact
b) Enriched compatibility: Im(A) ⊂ Im(Σε) and Σ−1

ε A is compact
c) x, ε sub-Gaussian random variables
d) minimize over a compact set

B ⊆ Badm := {B : ℓ2 → X bdd : AB satisfies the finite basis injectivity (FBI)}

15/23



Sparsity promotion and ℓ1 - assumptions

⊖ No explicit formula for the solution of the inner problem ûB
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ℓ1 regularization - theoretical results7

What we are able to prove under these assumptions:
▶ for every B ∈ B, there exist a minimizer ûB = RB(y)

▶ Hölder stability with respect to B:

∥RB1(y)−RB2(y)∥ℓ2 ≤ c∥B1 −B2∥1/2, B1, B2 ∈ B

▶ Generalization estimates:

|L(B̂S)− L(B⋆)| ≤
(
c1 + c2

√
τ√

m

)1− 1
s+1

,

where s measures the compactness of B via covering numbers

log(N(B, r)) ≲ r−1/s

7Learning sparsity-promoting regularizers for linear inverse problems, preprint, 2024 16/23
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Examples of classes B

▶ compact perturbation of a reference operator

B = {B0(Id+K) : K ∈ H},

being H a compact set of compact operators

▶ learning the mother wavelet:
B = {Bϕ : ϕ ∈ Φ}

where Φ is a compact class of mother wavelets

In both cases, it is possible to quantify compactness via covering numbers

17/23
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Learning the optimal generalized Tikhonov regularizer

Learning the optimal ℓ1 regularizer

Sparse regularization via Gaussian mixtures



Alternative approach to sparsity promotion: Gaussian mixture prior

Motivation

Generalized Tikhonov↭ (Linear) MMSE estimator↭ x, ε Gaussians

Goal: statistical model for sparse signals such that the MMSE/Bayes estimator can be computed

Our model for (group) sparsity8: degenerate Gaussian mixtures in Rn

X =

L∑
i=1

Xi1{i}(I), Xi ∼ N(µi,Σi), rank(Σi) ≤ s ≪ n

▶ s sparsity
▶ I random variable on {1, . . . , L}
▶ wi := P(I = i) weights of the mixture

8Learning a Gaussian Mixture for Sparsity Regularization in Inverse Problems, arXiv:2401.16612
see also: [Bocchinfuso, Calvetti, Somersalo 2023] 18/23
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MMSE/Bayes estimator for Gaussian mixtures and linear observations

X =

L∑
i=1

Xi1{i}(I), Xi ∼ N(µi,Σi), rank(Σi) ≤ s ≪ n

Lemma9

Let E ∼ N(0,ΣE) be independent of Xi and I . The Bayes estimator of Y = AX + E is

R⋆(y) = E[X|Y = y] =
L∑

i=1

ci∑L
j=1 cj

(µi +ΣiA
T (AΣiA

T +ΣE)
−1(y −Aµi)), (1)

where
ci =

wi√
|AΣiAT +ΣE |

exp
(
− 1

2
∥(AΣiA

T +ΣE)
− 1

2 (y −Aµi)∥22
)

(2)

Useful parametrization:

R∗(y) = Rθ(y), θ =
(
{wi}Li=1, {µi}Li=1, {Σi}Li=1

)

9Kundu, Chatterjee, Murthy, Sreenivas, 2008 19/23



MMSE/Bayes estimator for Gaussian mixtures and linear observations

X =

L∑
i=1

Xi1{i}(I), Xi ∼ N(µi,Σi), rank(Σi) ≤ s ≪ n

Lemma9

Let E ∼ N(0,ΣE) be independent of Xi and I . The Bayes estimator of Y = AX + E is

R⋆(y) = E[X|Y = y] =
L∑

i=1

ci∑L
j=1 cj

(µi +ΣiA
T (AΣiA

T +ΣE)
−1(y −Aµi)), (1)

where
ci =

wi√
|AΣiAT +ΣE |

exp
(
− 1

2
∥(AΣiA

T +ΣE)
− 1

2 (y −Aµi)∥22
)

(2)

Useful parametrization:

R∗(y) = Rθ(y), θ =
(
{wi}Li=1, {µi}Li=1, {Σi}Li=1

)
9Kundu, Chatterjee, Murthy, Sreenivas, 2008 19/23



The Bayes estimator is a neural network

Proposition10

We have that

Rθ(y) =
L∑

i=1

softmax(f(y))i gi(y), θ =
(
{wi}i, {µi}i, {Σi}i

)
where

fi(y) = b(wi,Σi)−
1

2
∥(AΣiA

T +ΣE)
− 1

2 (y −Aµi)∥22 (quadratic)

gi(y) = µi +ΣiA
T (AΣiA

T +ΣE)
−1(y −Aµi) (affine)

−→ similar to the attention mechanism of transformers

Two training approaches:
1. supervised: minimize

L̂(θ) =
1

N

N∑
j=1

∥xj −Rθ(yj)∥22,

2. unsupervised: approximate wi, µi and Σi from {xj}

10A, Ratti, Santacesaria, Sciutto, Learning a Gaussian Mixture for Sparsity Regularization in Inverse Problems, 2024 20/23
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gi(y) = µi +ΣiA
T (AΣiA

T +ΣE)
−1(y −Aµi) (affine)

−→ similar to the attention mechanism of transformers

Two training approaches:
1. supervised: minimize

L̂(θ) =
1

N

N∑
j=1

∥xj −Rθ(yj)∥22,

2. unsupervised: approximate wi, µi and Σi from {xj}
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Numerical experiments: deblurring with 10% noise

Rows: Data, Unsupervised approach, dictionary learning, group dictionary learning
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Numerical experiments: deblurring with 10% noise

Table: Relative MSE values

Dataset 1 Dataset 2 Dataset 3
Unsupervised 3.68% 2.65 10−3% 1.01 10−2%

Dictionary learning 14.32% 6.61 10−3% 1.28 10−2%

Group dictionary learning 13.51% 4.62 10−3% 3.41 10−2%

Also experiments with denoising and comparisons with Lasso, Group Lasso and iterative hard
thresholding

22/23



Conclusions

Learning (simple) regularizers for inverse problems:
generalized Tikhonov and sparsity promoting regularization

Infinite-dimensional framework:
discretization-independent results for the learning problem

Gaussian mixtures as model for (group) sparsity:
a non-iterative and learnable approach to sparse optimization

Supervised and unsupervised techniques:
comparable theoretical guarantees and numerical effectiveness

Further extensions:
1. careful study of the connection between sparsity promotion and the attention mechanism
2. more complex regularization terms & nonlinear inverse problems
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