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Internal data in quantitative hybrid imaging problems
» Hybrid conductivity imaging [Widlak, Scherzer, 2012]
—div(aVu;) =0 in Q,
U; = ©; on 0f).

ui(z) or a(z)Vui(z) or a(z) |Vul® (z)
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Internal data in quantitative hybrid imaging problems
» Hybrid conductivity imaging [Widlak, Scherzer, 2012], quantitative photoacoustic tomography
—div(a Vu)+pu; =0 in Q,
Ui = Qi on 0f).

ui(z) or a(z)Vui(z) or a(z) [Vul (z) or pu(z)u(z) SN a, [t
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Internal data in quantitative hybrid imaging problems
» Hybrid conductivity imaging [Widlak, Scherzer, 2012], quantitative photoacoustic tomography
—div(a Vu)+pu; =0 in Q,
Ui = Qi on 0f).

ui(z) or a(z)Vui(z) or a(z) [Vul (z) or pu(z)u(z) SN a, [t

» Quantitative thermoacoustic tomography [Bal et al., 2011, Ammari et al., 2013]

Au; + (w? +iwo) u; = 0 in Q,
Ui = Q5 on 99Q.

o(@) lul*(@)  — o
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Internal data in quantitative hybrid imaging problems
» Hybrid conductivity imaging [Widlak, Scherzer, 2012], quantitative photoacoustic tomography
—div(a Vu)+pu; =0 in Q,
U; = Y5 on 0f2.

2

ui(z) or a(z)Vui(z) or a(@) |[Vul(z) or p(@)ui(z) — ap J

> Quantitative thermoacoustic tomography [Bal et al., 2011, Ammari et al., 2013]
Au; + (w? +iwo) u; = 0 in Q,
U = Q; on Of.
2 ?
o(x) |u;|” () — o

> MREIT [Seo et al., 2012, Bal and Guo, 2013]

curlE* = iwH? in Q,

curlH! = —i(we +io)E"  in Q,

Eixv=qg;xv on 0.
H'(x) N €,0
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Non-vanishing gradients and Jacobians
» Consider for simplicity the hybrid conductivity problem with internal data Vu and unknown a:

—div(a Vu) =0 in Q,
U= on Of.
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Non-vanishing gradients and Jacobians
» Consider for simplicity the hybrid conductivity problem with internal data Vu and unknown a:

—div(a Vu) =0 in Q,
U= on Of.

» With 1 measurement:

Va-Vu=—-aAu = V(loga) -Vu=—-Au
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Non-vanishing gradients and Jacobians
» Consider for simplicity the hybrid conductivity problem with internal data Vu and unknown a:

—div(a Vu) =0 in €,
U= on Of.

» With 1 measurement:
Va-Vu=—-aAu = V(loga) Vu=-Au
This equation may be solved in a if a is known on 99 and if

Vu(z) # 0, z € Q. )
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Non-vanishing gradients and Jacobians
» Consider for simplicity the hybrid conductivity problem with internal data Vu and unknown a:

—div(a Vu) =0 in €,
U= on 0f.

» With 1 measurement:
Va-Vu=—-aAu = V(loga) Vu=-Au
This equation may be solved in a if a is known on 99 and if

Vu(z) # 0, z € Q. )

» With d measurements:
V(loga) : (Vula T ,V’LLd) = _(Auh ceey Aud)
— V(loga) = —(Auy, ..., Aug)(Vuy, -, Vug) "
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Non-vanishing gradients and Jacobians
» Consider for simplicity the hybrid conductivity problem with internal data Vu and unknown a:

—div(a Vu) =0 in €,
U= on 0f).

» With 1 measurement:
Va-Vu=—-aAu = V(loga) Vu=-Au
This equation may be solved in a if a is known on 99 and if

Vu(z) # 0, z € Q. J

> With d measurements:
V(oga) - (Vuy, -+, Vug) = —(Aug, ..., Aug)
— V(loga) = —(Auy, ..., Aug)(Vuy, -, Vug) "

This equation may be solved in a if a is known at 2y € 92 and

det [Vui(z) -+ Vua(z)] #0, z € Q. J
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Main question

Is it possible to find suitable boundary values ¢; so that the corresponding solutions u; satisfy certain
non-zero constraints, such as a non-vanishing Jacobian

det [Vuy(z) -+ Vug(z)] #07?
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Main question

Is it possible to find suitable boundary values ¢; so that the corresponding solutions u; satisfy certain
non-zero constraints, such as a non-vanishing Jacobian

det [Vuy(z) -+ Vug(z)] #07?

» In other words, this ensures that the internal data are rich enough
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Main question

Is it possible to find suitable boundary values ¢; so that the corresponding solutions u; satisfy certain
non-zero constraints, such as a non-vanishing Jacobian

det [Vuy(z) -+ Vug(z)] #07?

» In other words, this ensures that the internal data are rich enough

> Ideally, we would like to construct the ¢;s independently of the unknown coefficients
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Outline of the talk

@ The Radé-Kneser-Choquet theorem

© Runge approximation & Whitney embedding

© Using random boundary conditions
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Outline of the talk

@ The Radé-Kneser-Choquet theorem
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The Radé-Kneser-Choquet theorem

Theorem (Alessandrini Magnanini 1994, Bauman et al. 2000, Alessandrini Nesi 2015)
Let Q C R? be bounded and convex and a € C%%(Q; R?*2) be uniformly elliptic. Let u; € H' () solve

—div(aVu;) =0 in Q, w; = T; on 0N.
Then

det [Vuy(z) Vug(z)] #0, z e N
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The Radé-Kneser-Choquet theorem

Theorem (Alessandrini Magnanini 1994, Bauman et al. 2000, Alessandrini Nesi 2015)
Let Q C R? be bounded and convex and a € C%%(Q; R?*2) be uniformly elliptic. Let u; € H' () solve

—div(aVu;) =0 in Q, U; = T; on 0N.
Then
det [Vuy(z) Vug(z)] #0, z e N
Q > aVul(xo) + ﬂVUQ(xO) =0
» Set v(x) = auy(z) + Pua(z):
> Vu(xg) =0

» Thus, v has a saddle point in zg
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The failure in 3D and for other elliptic PDEs

» In 3D, the above result fails. Counterexamples by Laugesen 1996, Briane et al 2004 and
Capdeboscq 2015: it is not possible to find (¢!, 2, ©?) independently of a so that

det [Vui(z) Vug(z) Vus(z)] #0, x €.
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The failure in 3D and for other elliptic PDEs

» In 3D, the above result fails. Counterexamples by Laugesen 1996, Briane et al 2004 and
Capdeboscq 2015: it is not possible to find (¢!, 2, ©?) independently of a so that

det [Vui(z) Vug(z) Vus(z)] #0, x €.

» This result fails for Helmholtz type problems or for eigenvalue problems

div(aVu) + k*qu =0

since solutions oscillate.
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Critical points in 3D

What about critical points: can we find ¢ independently of a so that

Vu(z) # 0, x € N?
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Critical points in 3D

What about critical points: can we find ¢ independently of a so that

Vu(z) # 0, x e Q?

Theorem (GSA, Bal, Di Cristo, ARMA 2017)

Let Q CR? be a bounded Lipschitz domain. Take ¢ € C(0X)N H2(0X). There exists a (nonempty
open set of) a € C°°(X) such that the solution u € H'(X) to

—div(aVu) =0 in Q,
U=q on 05,

has a critical point in 2, namely Vu(x) = 0 for some z € Q.
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Alternative approaches

» Complex geometrical optics solutions [Bal and Uhlmann, IP 2010]

cos?z +sin?z=1#0
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Alternative approaches

» Complex geometrical optics solutions [Bal and Uhlmann, IP 2010]

cos?z +sin?z=1#0

> Use multiple frequencies [GSA, Commun. PDE 2015]

cos? (k1x) + cos? (kox) # 0
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Alternative approaches

» Complex geometrical optics solutions [Bal and Uhlmann, IP 2010]

cos?z +sin?z=1#0

> Use multiple frequencies [GSA, Commun. PDE 2015]
cos? (k1x) + cos? (kox) # 0

Also with Neumann eigenfunctions (bypassing the “hot spots” conjecture):

K
Z |Ver(x)]* > ¢, eV
k=1

[GSA, Barnes, Jambhale and Nickl, Math. Stat. Learn. 2025]
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Alternative approaches

» Complex geometrical optics solutions [Bal and Uhlmann, IP 2010]

cos?z +sin?z=1#0

> Use multiple frequencies [GSA, Commun. PDE 2015]
cos? (k1x) + cos? (kox) # 0

Also with Neumann eigenfunctions (bypassing the “hot spots” conjecture):

K
Z |Ver(x)]* > ¢, eV
k=1

[GSA, Barnes, Jambhale and Nickl, Math. Stat. Learn. 2025]

» Runge approximation & Whitney embedding

» Random boundary conditions
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Outline of the talk

© Runge approximation & Whitney embedding
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The model problem

» Let Q CR% d > 2 be a smooth bounded domain. Consider the elliptic PDE

Lu = —div(aVu) +b-Vu+cu=0 in{,

with a, b and ¢ smooth enough so that u € C1® and the unique continuation property (UCP)
holds
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The model problem

» Let Q CR% d > 2 be a smooth bounded domain. Consider the elliptic PDE
Lu = —div(aVu) +b-Vu+cu=0 in{,

with a, b and ¢ smooth enough so that u € C1® and the unique continuation property (UCP)
holds

> Consider, for simplicity, the non-vanishing Jacobian constraint: look for ¢; such that

det [Vuy -+ Vug] (z) #0
possibly locally, where

Lu; =0 in Q,
U = @; on 0f2.
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Main tool: the Runge Approximation [Lax 1956]

> Let Q' C Q be simply connected and v € H'(Q') be a
local solution:
Lv=0 in.
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Main tool: the Runge Approximation [Lax 1956]

> Let Q' C Q be simply connected and v € H'()') be a
local solution:
Lv=0 in.

In general, v cannot be extended to a global solution w,
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Main tool: the Runge Approximation [Lax 1956]

> Let Q' C Q be simply connected and v € H'()') be a
local solution:
Lv=0 in.

In general, v cannot be extended to a global solution w,
BUT:
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Main tool: the Runge Approximation [Lax 1956]

> Let Q' C Q be simply connected and v € H'()') be a
local solution:
Lv=0 in.

In general, v cannot be extended to a global solution w,
BUT:

» Runge approximation: there exist global solutions u,, to
Lu, =0 inQ

such that
||un|Q/ — 'UHLQ(Q’) — 0.
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Main tool: the Runge Approximation [Lax 1956]

> Let Q' C Q be simply connected and v € H'()') be a
local solution:
Lv=0 in.

In general, v cannot be extended to a global solution w,
BUT:

» Runge approximation: there exist global solutions u,, to
Lu, =0 inQ
such that

unler — vllL2@ry — 0.

» By elliptic regularity, we get for Q" € Q':

llunlor — U”Cl(W) — 0.
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The Runge approximation and non-zero constraints [Bal and Uhlmann, CPAM 2013]
1. Fix 79 € Q and r > 0. Consider local solutions v? = ;:
—div(a(zo)Vod) =0 in B(zo,r)

such that det [Vof -+ Vo] #0in B(zg,r).
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The Runge approximation and non-zero constraints [Bal and Uhlmann, CPAM 2013]

1. Fix g € Q and 7 > 0. Consider local solutions o) =
—div(a(xo) Vo) =0 in B(zo,7)

such that det [Vof -+ Vo] #0in B(zg,r).
2. Find 7 € (0, r] and v; such that Lv; = 0 in B(zg,7) and

||UzQ - vi”Cl(B(xO,F))

is arbitrarily small.
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The Runge approximation and non-zero constraints [Bal and Uhlmann, CPAM 2013]

1. Fix g € Q and 7 > 0. Consider local solutions o) =
—div(a(xo) Vo) =0 in B(zo,7)
such that det [Vof -+ Vo] #0in B(zg,r).
2. Find 7 € (0, 7] and v; such that Lv; = 0 in B(zo,7) and
107 = vill s (5o )

is arbitrarily small.

3. Runge approximation: find u; such that Lu; = 0 in Q
and ||v; — ui”cl(m) is arbitrarily small. Thus

det [Vuy -+ Vuy| (z) #0, x € B(zo,7/2).
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The Runge approximation and non-zero constraints [Bal and Uhlmann, CPAM 2013]

1. Fix g € Q and 7 > 0. Consider local solutions o) =
—div(a(xo) Vo) =0 in B(zo,7)
such that det [Vof -+ Vo] #0in B(zg,r).
2. Find 7 € (0, 7] and v; such that Lv; = 0 in B(zo,7) and
107 = vill s (5o )

is arbitrarily small.

3. Runge approximation: find u; such that Lu; = 0 in Q
and ||v; — ui”cl(m) is arbitrarily small. Thus

det [Vuy -+ Vuy| (z) #0, x € B(zo,7/2).
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The Runge approximation and non-zero constraints [Bal and Uhlmann, CPAM 2013]

1. Fix g € Q and r > 0. Consider local solutions o) =
—div(a(xo) Vo) =0 in B(zo,7)
such that det [Vof -+ Vo] #0in B(zg,r).
2. Find 7 € (0, r] and v; such that Lv; = 0 in B(zg,7) and
107 = viller (5o )

is arbitrarily small.

3. Runge approximation: find u; such that Lu; =0 in Q
and ||v; — “incl(m) is arbitrarily small. Thus

det [Vuy -+ Vuy| (z) #0, x € B(zo,7/2).

4. Covering of Q with N balls: N - d boundary conditions.
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Two main issues

> You need a large number of measurements to satisfy the constraint
rank [Vul Vug - VuNd] =d

everywhere.
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Two main issues

> You need a large number of measurements to satisfy the constraint
rank [Vul Vug - VUNd] =d

everywhere.

» The suitable solutions, and so their boundary values, are not explicitly contructed (axiom of choice).
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Whitney projection argument

Lemma (Greene and Wu 1975)

Take k > 2d (possibly large). Let uq, ..., uy be solutions to Lu; = 0 in ) such that

rank [Vul <o Vup_q Vuk] (z) =d, z €.
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Whitney projection argument

Lemma (Greene and Wu 1975)

Take k > 2d (possibly large). Let uq, ..., uy be solutions to Lu; = 0 in ) such that

rank [Vul <o Vup_q Vuk] (z) =d, z €.

Then, for almost every a € R5 =1, we have

rank [V (w1 —arug) V(ug —agug) -+ V(up—1— ak_luk)] (x) =d, z € €.
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Whitney projection argument

Lemma (Greene and Wu 1975)

Take k > 2d (possibly large). Let uq, ..., uy be solutions to Lu; = 0 in ) such that

rank [Vul <o Vup_q Vuk] (z) =d, z € Q.

Then, for almost every a € R5 =1, we have

rank [V (w1 — arug) V (ug — aguy)

In other words: we can almost always reduce the number of solutions (until 2d) and keep the constraint.
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Whitney projection argument

Lemma (Greene and Wu 1975)

Take k > 2d (possibly large). Let uq, ..., uy be solutions to Lu; = 0 in ) such that

rank [Vul <o Vup_q Vuk] (z) =d, z € Q.

Then, for almost every a € R5 =1, we have

rank [V (w1 — arug) V (ug — aguy) V (ug—1 — ak_luk)] (x) =d, x € 0.

In other words: we can almost always reduce the number of solutions (until 2d) and keep the constraint.
In particular, arbitrarily small weights a can be used.
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Runge & Whitney: main result

Theorem (GSA and Capdeboscq, IMRN 2019)

The set of 2d solutions uy, . .., usq to Lu; = 0 in Q such that
rank [Vu; -+ Vuyg (z) = d,

is open and dense in the set of 2d solutions to Lu; = 0 in €.

x €,
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Runge & Whitney: main result

Theorem (GSA and Capdeboscq, IMRN 2019)

The set of 2d solutions w1, .. .,usq to Lu; = 0 in Q such that
rank [Vul e Vuzd] (z) =d, x €,

is open and dense in the set of 2d solutions to Lu; = 0 in €.

Proof.
Open. The rank is stable under small perturbations of u;.
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Runge & Whitney: main result

Theorem (GSA and Capdeboscq, IMRN 2019)

The set of 2d solutions w1, .. .,usq to Lu; = 0 in Q such that
rank [Vul e VUQd] (z) =d, x €,

is open and dense in the set of 2d solutions to Lu; = 0 in €.

Proof.
Open. The rank is stable under small perturbations of u;.
Dense. Take 11, ...,y solutions to Lu; = 0.
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Runge & Whitney: main result

Theorem (GSA and Capdeboscq, IMRN 2019)

The set of 2d solutions w1, .. .,usq to Lu; = 0 in Q such that

rank [Vul e VUQd] (z) =d, x €,

is open and dense in the set of 2d solutions to Lu; = 0 in €.

Proof.
Open. The rank is stable under small perturbations of u;.
Dense. Take i1, ...,1sq solutions to Lii; = 0. By Runge, we have a large number of solutions so that

rank [Vul VuNd] (x) =d, x € .
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Runge & Whitney: main result

Theorem (GSA and Capdeboscq, IMRN 2019)

The set of 2d solutions w1, .. .,usq to Lu; = 0 in Q such that

rank [Vul e VUQd] (z) =d, x €,

is open and dense in the set of 2d solutions to Lu; = 0 in €.

Proof.
Open. The rank is stable under small perturbations of u;.
Dense. Take i1, ...,1sq solutions to Lii; = 0. By Runge, we have a large number of solutions so that
rank [Vul e VuNd] (x) =d, x € 0.
In particular B
rank [Vﬁl «vv Vigg Vur --- VuNd} (x) =d, z €.
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Runge & Whitney: main result

Theorem (GSA and Capdeboscq, IMRN 2019)

The set of 2d solutions w1, .. .,usq to Lu; = 0 in Q such that

rank [Vul e VUQd] (z) =d, x €,

is open and dense in the set of 2d solutions to Lu; = 0 in €.

Proof.
Open. The rank is stable under small perturbations of u;.
Dense. Take i1, ...,1sq solutions to Lii; = 0. By Runge, we have a large number of solutions so that
rank [Vul e VuNd] (x) =d, x € 0.
In particular B
rank [Vﬁl «vv Vigg Vur --- VuNd} (x) =d, z €.

Apply Whitney reduction lemma Nd times with small weights a, until you reach 2d solutions.
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Remarks on the result

P As a corollary, the set of 2d boundary conditions whose solutions satisfy the constraint everywhere
is open and dense.
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Remarks on the result

P As a corollary, the set of 2d boundary conditions whose solutions satisfy the constraint everywhere
is open and dense.

» The approach is very general, and works with many other constraints, like

|uz] () > 0 (nodal set) d + 1 solutions
|det [Vuy -+ Vug]|(x) > 0 (Jacobian) 2d solutions

Ul Ud+1 “ " . .
|det YV, Vgt |(x) > 0 (“augmented” Jacobian) 2d + 1 solutions

which appear in several hybrid problems.
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Remarks on the result

P As a corollary, the set of 2d boundary conditions whose solutions satisfy the constraint everywhere
is open and dense.

» The approach is very general, and works with many other constraints, like

|ui| (z) > 0 (nodal set) d + 1 solutions
|det [Vuy -+ Vug]|(x) > 0 (Jacobian) 2d solutions

Ul s Ud+1 “ " . .
|det Vi o Vg |(x) > 0 (“augmented” Jacobian) 2d + 1 solutions

which appear in several hybrid problems.

» However, open and dense sets may have arbitrarily small measure...
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Outline of the talk

© Using random boundary conditions
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Using random boundary conditions
> u: subgaussian probability distribution on H'/2(9%2)
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Using random boundary conditions
> u: subgaussian probability distribution on H'/2(9%2)
> ¢ ~ v is of the form
= akey

keN

where {e}.} is an ONB of H'/2(0%2) and {ay}. are uncorrelated real random variables
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Using random boundary conditions
> u: subgaussian probability distribution on H'/2(9%2)
> ¢ ~ v is of the form
= akey

keN

where {e;} is an ONB of H'/2(9Q) and {ay}, are uncorrelated real random variables

Theorem (GSA, IP 2022)
Take N € N. Let ¢},..., oL ~ v be sampled i.i.d. in H'/?(0Q) forl =1,...,N. Then

max |det [V} -+ VUl (z)] > C, z €,

=llgoooq

where
—div(aVul) + qul =0 inQ,
ul = ¢l on 092,
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Using random boundary conditions
> u: subgaussian probability distribution on H'/2(9%2)
> ¢ ~ v is of the form
= akey

keN

where {e;} is an ONB of H'/2(9Q) and {ay}, are uncorrelated real random variables

Theorem (GSA, IP 2022)
Take N € N. Let ¢},..., oL ~ v be sampled i.i.d. in H'/?(0Q) forl =1,...,N. Then

max |det [V} -+ VUl (z)] > C, z €,

=llgoooq

where
—div(aVul) + qul =0 inQ,
uﬁ = (pé on 012,
with probability greater than
1 — Co N2 exp(—CsNY/%).
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Sketch of the proof

Theorem (GSA, IP 2022)
Take N € N. Let ¢},..., oL ~ v be sampled i.i.d. in H'/?(0Q) forl =1,...,N. Then

T |det [Vu} -+ VU] (z)] > C, reV

with probability greater than
1 — CoN¥2 exp(—C3N/4).

Two steps:

1. By quantitative Runge approximation (as in Salo-Riiland-2018, but with arbitrary norms on 99):

E(|det [Vu; -+ Vug] (z)]) > C
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Sketch of the proof

Theorem (GSA, IP 2022)
Take N € N. Let ¢},..., ¢!, ~ v be sampled i.i.d. in H*/2(99Q) forl =1,...,N. Then

T |det [Vu} -+ VU] (z)] > C, reV

with probability greater than

1 — Co N2 exp(—C5N/?),

Two steps:

1. By quantitative Runge approximation (as in Salo-Riiland-2018, but with arbitrary norms on 99):

E(|det [Vu; -+ Vug] (z)]) > C

2. Concentration inequalities
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Random boundary values: simulations [GSA, Cen and Zhou, preprint 2025]
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Figure: Boundary values and the non-zero region maxe—1, . n |8, u'® (z)| > 0.1, N =1,2,3,4,5.
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Conclusions

» The inversion in quantitative hybrid imaging often requires the solutions to the direct problem to
satisfy certain non-zero constraints.

» Available methods:

»> The Radé-Kneser-Choquet theorem and its generalizations (only in 2D, not for Helmholtz)
» CGO solutions

» multiple frequencies

»> Runge & Whitney

» Random boundary values

» Future prospectives:

»> combine Runge & Whitney with random boundary values
» other PDEs (Maxwell, elasticity, etc.)
» numerical experiments
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