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Internal data in quantitative hybrid imaging problems
▶ Hybrid conductivity imaging [Widlak, Scherzer, 2012]{

−div(a∇ui) = 0 in Ω,
ui = φi on ∂Ω.

ui(x) or a(x)∇ui(x) or a(x) |∇ui|2 (x)
?−→ a

▶ Quantitative thermoacoustic tomography [Bal et al., 2011, Ammari et al., 2013]{
∆ui + (ω2 + iωσ)ui = 0 in Ω,
ui = φi on ∂Ω.

σ(x) |ui|2 (x)
?−→ σ

▶ MREIT [Seo et al., 2012, Bal and Guo, 2013] curlEi = iωHi in Ω,
curlHi = −i(ωε+ iσ)Ei in Ω,
Ei × ν = φi × ν on ∂Ω.

Hi(x)
?−→ ε, σ
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Non-vanishing gradients and Jacobians
▶ Consider for simplicity the hybrid conductivity problem with internal data ∇u and unknown a:{

−div(a∇u) = 0 in Ω,
u = φ on ∂Ω.

▶ With 1 measurement:

∇a · ∇u = −a∆u =⇒ ∇(log a) · ∇u = −∆u

This equation may be solved in a if a is known on ∂Ω and if

∇u(x) ̸= 0, x ∈ Ω.

▶ With d measurements:

∇(log a) · (∇u1, · · · ,∇ud) = −(∆u1, . . . ,∆ud)

=⇒ ∇(log a) = −(∆u1, . . . ,∆ud)(∇u1, · · · ,∇ud)
−1

This equation may be solved in a if a is known at x0 ∈ ∂Ω and

det
[
∇u1(x) · · · ∇ud(x)

]
̸= 0, x ∈ Ω.
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Main question

Is it possible to find suitable boundary values φi so that the corresponding solutions ui satisfy certain
non-zero constraints, such as a non-vanishing Jacobian

det
[
∇u1(x) · · · ∇ud(x)

]
̸= 0?

▶ In other words, this ensures that the internal data are rich enough
▶ Ideally, we would like to construct the φis independently of the unknown coefficients
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Outline of the talk

1 The Radó-Kneser-Choquet theorem

2 Runge approximation & Whitney embedding

3 Using random boundary conditions
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The Radó-Kneser-Choquet theorem
Theorem (Alessandrini Magnanini 1994, Bauman et al. 2000, Alessandrini Nesi 2015)

Let Ω ⊆ R2 be bounded and convex and a ∈ C0,α(Ω;R2×2) be uniformly elliptic. Let ui ∈ H1(Ω) solve

−div(a∇ui) = 0 in Ω, ui = xi on ∂Ω.

Then
det

[
∇u1(x) ∇u2(x)

]
̸= 0, x ∈ Ω.

x0

+

+

− −

Ω ▶ α∇u1(x0) + β∇u2(x0) = 0

▶ Set v(x) = αu1(x) + βu2(x):
▶ ∇v(x0) = 0

▶ Thus, v has a saddle point in x0
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The failure in 3D and for other elliptic PDEs

▶ In 3D, the above result fails. Counterexamples by Laugesen 1996, Briane et al 2004 and
Capdeboscq 2015: it is not possible to find (φ1, φ2, φ3) independently of a so that

det
[
∇u1(x) ∇u2(x) ∇u3(x)

]
̸= 0, x ∈ Ω.

▶ This result fails for Helmholtz type problems or for eigenvalue problems

div(a∇u) + k2qu = 0

since solutions oscillate.
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Critical points in 3D

What about critical points: can we find φ independently of a so that

∇u(x) ̸= 0, x ∈ Ω?

Theorem (GSA, Bal, Di Cristo, ARMA 2017)

Let Ω ⊆ R3 be a bounded Lipschitz domain. Take φ ∈ C(∂X) ∩H
1
2 (∂X). There exists a (nonempty

open set of) a ∈ C∞(X) such that the solution u ∈ H1(X) to{
−div(a∇u) = 0 in Ω,
u = φ on ∂Ω,

has a critical point in Ω, namely ∇u(x) = 0 for some x ∈ Ω.
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O ∇u(O) ≈ 0

X1 a → ∞ =⇒ u ≈ 1

Z

X2

Ω

a → ∞ =⇒ u ≈ 2

x(2) φ(x(2)) = 2

x(1) φ(x(1)) = 1
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Alternative approaches
▶ Complex geometrical optics solutions [Bal and Uhlmann, IP 2010]

cos2 x+ sin2 x = 1 ̸= 0

▶ Use multiple frequencies [GSA, Commun. PDE 2015]

cos2(k1x) + cos2(k2x) ̸= 0

Also with Neumann eigenfunctions (bypassing the “hot spots” conjecture):

K∑
k=1

|∇ek(x)|2 ≥ c, x ∈ Ω′

[GSA, Barnes, Jambhale and Nickl, Math. Stat. Learn. 2025]

▶ Runge approximation & Whitney embedding

▶ Random boundary conditions
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The model problem

▶ Let Ω ⊆ Rd, d ≥ 2 be a smooth bounded domain. Consider the elliptic PDE

Lu := −div(a∇u) + b · ∇u+ cu = 0 in Ω,

with a, b and c smooth enough so that u ∈ C1,α and the unique continuation property (UCP)
holds

▶ Consider, for simplicity, the non-vanishing Jacobian constraint: look for φi such that

det
[
∇u1 · · · ∇ud

]
(x) ̸= 0

possibly locally, where {
Lui = 0 in Ω,
ui = φi on ∂Ω.
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Main tool: the Runge Approximation [Lax 1956]

Ω′

Lv = 0

Ω

▶ Let Ω′ ⊆ Ω be simply connected and v ∈ H1(Ω′) be a
local solution:

Lv = 0 in Ω′.

In general, v cannot be extended to a global solution u,
BUT:

▶ Runge approximation: there exist global solutions un to

Lun = 0 in Ω

such that
∥un|Ω′ − v∥L2(Ω′) → 0.

▶ By elliptic regularity, we get for Ω′′ ⋐ Ω′:

∥un|Ω′ − v∥C1(Ω′′) → 0.
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The Runge approximation and non-zero constraints [Bal and Uhlmann, CPAM 2013]

x0

BrL0v
0
i = 0

Ω

1. Fix x0 ∈ Ω and r > 0. Consider local solutions v0i = xi:

−div(a(x0)∇v0i ) = 0 in B(x0, r)

such that det
[
∇v01 · · · ∇v0d

]
̸= 0 in B(x0, r).

2. Find r̃ ∈ (0, r] and vi such that Lvi = 0 in B(x0, r̃) and

∥v0i − vi∥C1(B(x0,r̃))

is arbitrarily small.
3. Runge approximation: find ui such that Lui = 0 in Ω

and ∥vi − ui∥C1(B(x0,r̃/2)) is arbitrarily small. Thus

det
[
∇u1 · · · ∇ud

]
(x) ̸= 0, x ∈ B(x0, r̃/2).

4. Covering of Ω with N balls: N · d boundary conditions.
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4. Covering of Ω with N balls: N · d boundary conditions.
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Two main issues

▶ You need a large number of measurements to satisfy the constraint

rank
[
∇u1 ∇u2 · · · ∇uNd

]
= d

everywhere.
▶ The suitable solutions, and so their boundary values, are not explicitly contructed (axiom of choice).
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Whitney projection argument

Lemma (Greene and Wu 1975)

Take k > 2d (possibly large). Let u1, . . . , uk be solutions to Lui = 0 in Ω such that

rank
[
∇u1 · · · ∇uk−1 ∇uk

]
(x) = d, x ∈ Ω.

Then, for almost every a ∈ Rk−1, we have

rank
[
∇ (u1 − a1uk) ∇ (u2 − a2uk) · · · ∇ (uk−1 − ak−1uk)

]
(x) = d, x ∈ Ω.

In other words: we can almost always reduce the number of solutions (until 2d) and keep the constraint.
In particular, arbitrarily small weights a can be used.
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Runge & Whitney: main result

Theorem (GSA and Capdeboscq, IMRN 2019)
The set of 2d solutions u1, . . . , u2d to Lui = 0 in Ω such that

rank
[
∇u1 · · · ∇u2d

]
(x) = d, x ∈ Ω,

is open and dense in the set of 2d solutions to Lui = 0 in Ω.

Proof.
Open. The rank is stable under small perturbations of ui.
Dense. Take ũ1, . . . , ũ2d solutions to Lũi = 0. By Runge, we have a large number of solutions so that

rank
[
∇u1 · · · ∇uNd

]
(x) = d, x ∈ Ω.

In particular
rank

[
∇ũ1 · · · ∇ũ2d ∇u1 · · · ∇uNd

]
(x) = d, x ∈ Ω.

Apply Whitney reduction lemma Nd times with small weights a, until you reach 2d solutions.
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Remarks on the result

▶ As a corollary, the set of 2d boundary conditions whose solutions satisfy the constraint everywhere
is open and dense.

▶ The approach is very general, and works with many other constraints, like

|u1| (x) > 0 (nodal set) d+ 1 solutions∣∣det [∇u1 · · · ∇ud

]∣∣(x) > 0 (Jacobian) 2d solutions∣∣det [ u1 · · · ud+1

∇u1 · · · ∇ud+1

]∣∣(x) > 0 (“augmented” Jacobian) 2d+ 1 solutions

which appear in several hybrid problems.
▶ However, open and dense sets may have arbitrarily small measure...
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Outline of the talk

1 The Radó-Kneser-Choquet theorem

2 Runge approximation & Whitney embedding

3 Using random boundary conditions
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Using random boundary conditions
▶ ν: subgaussian probability distribution on H1/2(∂Ω)

▶ φ ∼ ν is of the form
φ =

∑
k∈N

akek

where {ek} is an ONB of H1/2(∂Ω) and {ak}k are uncorrelated real random variables

Theorem (GSA, IP 2022)

Take N ∈ N. Let φl
1, . . . , φ

l
d ∼ ν be sampled i.i.d. in H1/2(∂Ω) for l = 1, . . . , N . Then

max
l=1,...,N

|det
[
∇ul

1 · · · ∇ul
d

]
(x)| ≥ C1, x ∈ Ω′,

where {
−div(a∇ul

i) + qul
i = 0 in Ω,

ul
i = φl

i on ∂Ω,

with probability greater than
1− C2N

d/2 exp(−C3N
1/d).
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Sketch of the proof

Theorem (GSA, IP 2022)

Take N ∈ N. Let φl
1, . . . , φ

l
d ∼ ν be sampled i.i.d. in H1/2(∂Ω) for l = 1, . . . , N . Then

max
l=1,...,N

|det
[
∇ul

1 · · · ∇ul
d

]
(x)| ≥ C1, x ∈ Ω′

with probability greater than
1− C2N

d/2 exp(−C3N
1/d).

Two steps:
1. By quantitative Runge approximation (as in Salo-Rüland-2018, but with arbitrary norms on ∂Ω):

E(|det
[
∇u1 · · · ∇ud

]
(x)|) ≥ C

2. Concentration inequalities
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Random boundary values: simulations [GSA, Cen and Zhou, preprint 2025]

Figure: Boundary values and the non-zero region maxℓ=1,...,N |∂x1u
(ℓ)(x)| ≥ 0.1, N = 1, 2, 3, 4, 5.
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Conclusions

▶ The inversion in quantitative hybrid imaging often requires the solutions to the direct problem to
satisfy certain non-zero constraints.

▶ Available methods:
▶ The Radó-Kneser-Choquet theorem and its generalizations (only in 2D, not for Helmholtz)
▶ CGO solutions
▶ multiple frequencies
▶ Runge & Whitney
▶ Random boundary values

▶ Future prospectives:
▶ combine Runge & Whitney with random boundary values
▶ other PDEs (Maxwell, elasticity, etc.)
▶ numerical experiments
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