Adversarial deformations for DNNs

Giovanni S. Alberti

Department of Mathematics, University of Genoa

May 27, 2019

Joint work

Figure: Rima Alaifari ETH Zürich Figure: Tandri Gauksson ETH Zürich

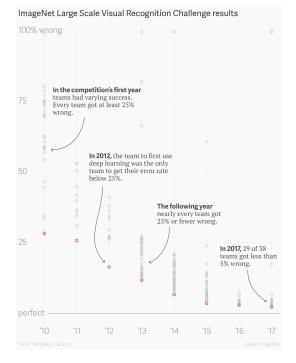
R. Alaifari, G. S. A. and T. Gauksson, ADef: an Iterative Algorithm to Construct Adversarial Deformations, ICLR 2019

Contents

Adversarial perturbations

Adversarial deformations

Experiments



 State of the art image classification is achieved by deep neural networks (DNNs).

Adversarial attacks

- State of the art image classification is achieved by deep neural networks (DNNs).
- Weakness: Adversarial examples slight perturbations to input can lead to misclassification (Szegedy et al 2013).

Adversarial attacks

- State of the art image classification is achieved by deep neural networks (DNNs).
- Weakness: Adversarial examples slight perturbations to input can lead to misclassification (Szegedy et al 2013).
- ▶ Gap between human and machine perception.
- Possible malicious attacks to fool classifiers.

Adversarial attacks

- State of the art image classification is achieved by deep neural networks (DNNs).
- Weakness: Adversarial examples slight perturbations to input can lead to misclassification (Szegedy et al 2013).
- ► Gap between human and machine perception.
- ▶ Possible malicious attacks to fool classifiers. Defenses???

Spot the difference

Spot the difference

Original: ptarmigan

Deformed: partridge

Perturbation

Grayscale square images of P = w² pixels are vectors in X := ℝ^{w×w} ≅ ℝ^P.

- Grayscale square images of P = w² pixels are vectors in X := ℝ^{w×w} ≅ ℝ^P.
- A classifier of X into $L \ge 2$ categories is a mapping

$$\mathcal{K}: X \to \{1, \ldots, L\}.$$

- Grayscale square images of P = w² pixels are vectors in X := ℝ^{w×w} ≅ ℝ^P.
- A classifier of X into $L \ge 2$ categories is a mapping

$$\mathcal{K}: X \to \{1, \ldots, L\}.$$

$$\mathcal{K}(x) = \underset{k=1,...,L}{\operatorname{arg\,max}} F_k(x)$$

for some mapping $F: X \to \mathbb{R}^L$

- Grayscale square images of P = w² pixels are vectors in X := ℝ^{w×w} ≅ ℝ^P.
- A classifier of X into $L \ge 2$ categories is a mapping

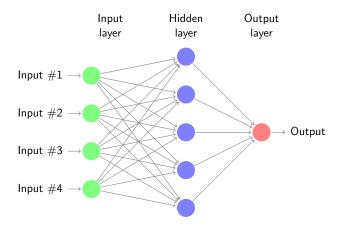
$$\mathcal{K}: X \to \{1, \ldots, L\}.$$

Implemented by

$$\mathcal{K}(x) = \arg\max_{k=1,\dots,L} F_k(x)$$

for some mapping $F : X \to \mathbb{R}^L$ (e.g. a neural network).

Structure of DNNs



Neural networks

Definition

A feedforward neural network of depth D is a mapping

$$F = F^D \circ F^{D-1} \circ \ldots \circ F^1$$

where

$$F^d: \mathbb{R}^{n_{d-1}} \to \mathbb{R}^{n_d}, \quad x \mapsto \rho(\mathbf{W}^d x + b^d)$$

for some $\mathbf{W}^d \in \mathbb{R}^{n_d \times n_{d-1}}$, $b^d \in \mathbb{R}^{n_d}$ and activation function $\rho : \mathbb{R} \to \mathbb{R}$ applied element-wise to $\mathbf{W}^d x + b^d$.

Neural networks

Definition

A feedforward neural network of depth D is a mapping

$$F = F^D \circ F^{D-1} \circ \ldots \circ F^1$$

where

$$F^d: \mathbb{R}^{n_{d-1}} \to \mathbb{R}^{n_d}, \quad x \mapsto \rho(\mathbf{W}^d x + b^d)$$

for some $\mathbf{W}^d \in \mathbb{R}^{n_d \times n_{d-1}}$, $b^d \in \mathbb{R}^{n_d}$ and activation function $\rho : \mathbb{R} \to \mathbb{R}$ applied element-wise to $\mathbf{W}^d x + b^d$.

► The entries of the matrices W^d and the vectors b^d are the free parameters and are learned during training.

Neural networks

Definition

A feedforward neural network of depth D is a mapping

$$F = F^D \circ F^{D-1} \circ \ldots \circ F^1$$

where

$$F^d: \mathbb{R}^{n_{d-1}} \to \mathbb{R}^{n_d}, \quad x \mapsto \rho(\mathbf{W}^d x + b^d)$$

for some $\mathbf{W}^d \in \mathbb{R}^{n_d \times n_{d-1}}$, $b^d \in \mathbb{R}^{n_d}$ and activation function $\rho : \mathbb{R} \to \mathbb{R}$ applied element-wise to $\mathbf{W}^d x + b^d$.

- ► The entries of the matrices W^d and the vectors b^d are the free parameters and are learned during training.
- ▶ In practice: many layers and $\|\mathbf{W}^d\| > 1 \longrightarrow$ stability unclear

Training

Given labeled data

$$(x_j, l_j) \in X \times \{1, \ldots, L\}, \quad j = 1, \ldots, m$$

find $F: X \to \mathbb{R}^L$ that captures the distribution.

Training

Given labeled data

$$(x_j, l_j) \in X \times \{1, \ldots, L\}, \quad j = 1, \ldots, m$$

find $F: X \to \mathbb{R}^L$ that captures the distribution. For example by minimizing the empirical risk

$$\mathcal{R}(F, (x_j, l_j)_{j=1}^m) = \frac{1}{m} \sum_{j=1}^m J(F, x_j, l_j)$$

where J is some loss function.

Let x ∈ X be a correctly classified image with label I = K(x).
Look for another image y close to x that is misclassified, i.e.

Let x ∈ X be a correctly classified image with label l = K(x).
 Look for another image y close to x that is misclassified, i.e.
 adversarial perturbation r = y − x such that ||r|| is small and

Let x ∈ X be a correctly classified image with label I = K(x).
Look for another image y close to x that is misclassified, i.e.
adversarial perturbation r = y − x such that ||r|| is small and
K(y) ≠ I.

Universal perturbations:

https://www.youtube.com/watch?v=jhOu5yheOrc

- ▶ Let $x \in X$ be a correctly classified image with label $I = \mathcal{K}(x)$.
- ▶ Look for another image y close to x that is misclassified, i.e.
 - adversarial perturbation r = y − x such that ||r|| is small and
 K(y) ≠ l.
- Universal perturbations: https://www.youtube.com/watch?v=jhOu5yheOrc
- Adversarial patch:

https://www.youtube.com/watch?v=i1sp4X57TL4

S. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, 2015

Let $\mathcal{K} = \arg \max F$ be a trained classifier, let $x \in X$ be an image and $I = \mathcal{K}(x)$. The following procedure searches for y with $\mathcal{K}(y) \neq I$:

▶ Choose a target label $k \neq I$.

S. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, 2015

Let $\mathcal{K} = \arg \max F$ be a trained classifier, let $x \in X$ be an image and $I = \mathcal{K}(x)$. The following procedure searches for y with $\mathcal{K}(y) \neq I$:

• Choose a target label $k \neq I$.

Set $f := F_k - F_l$: need to have f(y) > 0.

S. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, 2015

Let $\mathcal{K} = \arg \max F$ be a trained classifier, let $x \in X$ be an image and $I = \mathcal{K}(x)$. The following procedure searches for y with $\mathcal{K}(y) \neq I$:

• Choose a target label $k \neq I$.

• Set $f := F_k - F_l$: need to have f(y) > 0.

Since $f(x + r) \approx f(x) + \nabla f(x) \cdot r$, define the perturbation

$$r = -\frac{f(x)}{\|\nabla f(x)\|^2} \nabla f(x)$$

and set $\hat{x} = x + r$.

S. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, 2015

Let $\mathcal{K} = \arg \max F$ be a trained classifier, let $x \in X$ be an image and $I = \mathcal{K}(x)$. The following procedure searches for y with $\mathcal{K}(y) \neq I$:

• Choose a target label $k \neq I$.

- Set $f := F_k F_l$: need to have f(y) > 0.
- Since $f(x + r) \approx f(x) + \nabla f(x) \cdot r$, define the perturbation

$$r = -\frac{f(x)}{\|\nabla f(x)\|^2} \nabla f(x)$$

and set $\hat{x} = x + r$.

If K(x̂) ≠ I, then we are successful. Otherwise, start at the top with x replaced by x̂.

S. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, 2015

Let $\mathcal{K} = \arg \max F$ be a trained classifier, let $x \in X$ be an image and $I = \mathcal{K}(x)$. The following procedure searches for y with $\mathcal{K}(y) \neq I$:

• Choose a target label $k \neq I$.

- Set $f := F_k F_l$: need to have f(y) > 0.
- Since $f(x + r) \approx f(x) + \nabla f(x) \cdot r$, define the perturbation

$$r = -\frac{f(x)}{\|\nabla f(x)\|^2} \nabla f(x)$$

and set $\hat{x} = x + r$.

If K(x̂) ≠ I, then we are successful. Otherwise, start at the top with x replaced by x̂.

The target label k may be selected at each iteration to minimize ||r||.

Contents

Adversarial perturbations

Adversarial deformations

Experiments

▶ Model images as elements of the space

$$X = L^2([0,1]^2) = \{x \colon [0,1]^2 o \mathbb{R} : \int_{[0,1]^2} |x(s)|^2 \, ds < +\infty\}$$

Model images as elements of the space

$$X = L^2([0,1]^2) = \{x \colon [0,1]^2 o \mathbb{R} : \int_{[0,1]^2} |x(s)|^2 \, ds < +\infty\}$$

 \blacktriangleright Given a vector field $au: [0,1]^2
ightarrow \mathbb{R}^2$, the deformed image is

$$x_{\tau}(s) = x(s + \tau(s)).$$

Model images as elements of the space

$$X = L^2([0,1]^2) = \{x \colon [0,1]^2 o \mathbb{R} : \int_{[0,1]^2} |x(s)|^2 \, ds < +\infty\}$$

 \blacktriangleright Given a vector field $\tau:[0,1]^2\rightarrow \mathbb{R}^2,$ the deformed image is

$$x_{\tau}(s) = x(s + \tau(s)).$$

In this context, the distance between x and x_τ is not well quantified by a norm of x - x_τ

▶ Model images as elements of the space

$$X = L^2([0,1]^2) = \{x \colon [0,1]^2 o \mathbb{R} : \int_{[0,1]^2} |x(s)|^2 \, ds < +\infty\}$$

▶ Given a vector field $au : [0,1]^2 o \mathbb{R}^2$, the deformed image is

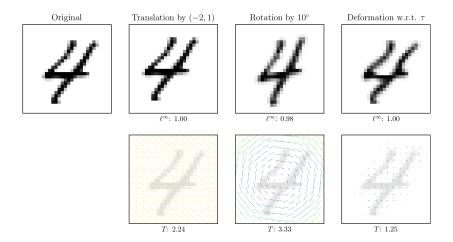
$$x_{\tau}(s) = x(s + \tau(s)).$$

- In this context, the distance between x and x_τ is not well quantified by a norm of x x_τ
- lnstead, we measure it with a norm on τ :

$$\| au\|_{\mathcal{T}} = \| au\|_{L^{\infty}([0,1]^2)} = \sup_{s \in [0,1]^2} \| au(s)\|_2$$

Examples of deformations

 $x_{\tau}(s) = x(s + \tau(s))$



Let $\mathcal{K} = \arg \max F$ be a classifier, let $x \in X = L^2([0,1]^2)$ be an image and $I = \mathcal{K}(x)$. Goal: Find *small* τ s.t. $I \neq \mathcal{K}(x_{\tau})$.

Let $\mathcal{K} = \arg \max F$ be a classifier, let $x \in X = L^2([0, 1]^2)$ be an image and $I = \mathcal{K}(x)$. Goal: Find *small* τ s.t. $I \neq \mathcal{K}(x_{\tau})$.

• Let $k \neq l$ be a target label

Let $\mathcal{K} = \arg \max F$ be a classifier, let $x \in X = L^2([0, 1]^2)$ be an image and $I = \mathcal{K}(x)$. Goal: Find *small* τ s.t. $I \neq \mathcal{K}(x_{\tau})$.

• Let $k \neq I$ be a target label

• Set
$$g: \tau \mapsto F_k(x_\tau) - F_l(x_\tau)$$
, search for τ s.t. $g(\tau) > 0$

Let $\mathcal{K} = \arg \max F$ be a classifier, let $x \in X = L^2([0, 1]^2)$ be an image and $I = \mathcal{K}(x)$. Goal: Find small τ s.t. $I \neq \mathcal{K}(x_{\tau})$.

• Let $k \neq I$ be a target label

• Set
$$g: \tau \mapsto F_k(x_\tau) - F_l(x_\tau)$$
, search for τ s.t. $g(\tau) > 0$

By linear approximation

$$g(\tau) \approx g(0) + (D_0g)\tau,$$

with (Fréchet) derivative

$$(D_0g)\tau = \int_{[0,1]^2} \alpha(s)\cdot\tau(s)\,ds, \quad \alpha(s) = (D_xF_k-D_xF_l)(s)\nabla x(s).$$

Let $\mathcal{K} = \arg \max F$ be a classifier, let $x \in X = L^2([0, 1]^2)$ be an image and $I = \mathcal{K}(x)$. Goal: Find *small* τ s.t. $I \neq \mathcal{K}(x_{\tau})$.

• Let $k \neq l$ be a target label

• Set
$$g: \tau \mapsto F_k(x_\tau) - F_l(x_\tau)$$
, search for τ s.t. $g(\tau) > 0$

By linear approximation

$$g(\tau) \approx g(0) + (D_0g)\tau,$$

with (Fréchet) derivative

$$(D_0g)\tau = \int_{[0,1]^2} \alpha(s)\cdot\tau(s)\,ds, \quad \alpha(s) = (D_xF_k-D_xF_l)(s)\nabla x(s).$$

Solve $(D_0g)\tau = -g(0)$ in least-squares sense:

$$\tau(s) = -\frac{g(0)}{\|\alpha\|_{L^2([0,1])}^2} \alpha(s)$$

Let $\mathcal{K} = \arg \max F$ be a classifier, let $x \in X = L^2([0, 1]^2)$ be an image and $l = \mathcal{K}(x)$. Goal: Find small τ s.t. $l \neq \mathcal{K}(x_{\tau})$.

• Let $k \neq I$ be a target label

• Set
$$g: \tau \mapsto F_k(x_\tau) - F_l(x_\tau)$$
, search for τ s.t. $g(\tau) > 0$

By linear approximation

$$g(\tau) \approx g(0) + (D_0g)\tau,$$

with (Fréchet) derivative

$$(D_0g)\tau = \int_{[0,1]^2} \alpha(s)\cdot\tau(s)\,ds, \quad \alpha(s) = (D_xF_k-D_xF_l)(s)\nabla x(s).$$

Solve $(D_0g)\tau = -g(0)$ in least-squares sense:

$$\tau(s) = -\frac{g(0)}{\|\alpha\|_{L^{2}([0,1])}^{2}} \alpha(s)$$

• Repeat until $\mathcal{K}(x^{(n)}) \neq I$ for $x^{(n)}(s) = x^{(n-1)}(s + \tau^{(n)}(s))$.

Contents

Adversarial perturbations

Adversarial deformations

Experiments

MNIST database

/ | | \ | / / / / / / | / | / / **33**33333333333333333 T Π

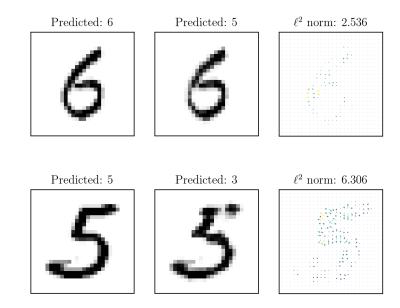
- ▶ 60 000 training images
- 10 000 test images
- ▶ 28 × 28 pixels

ILSVRC database (ImageNet)

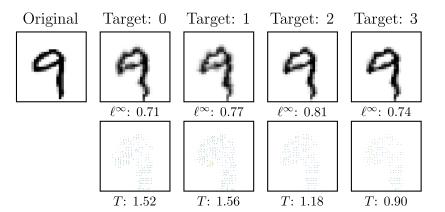
Figure: © Andrej Karpathy

- 1 000 image categories (classes)
- 1.2 million training images, 50 000 validation images
- ▶ 100 000 test images
- ▶ 256 × 256 pixels

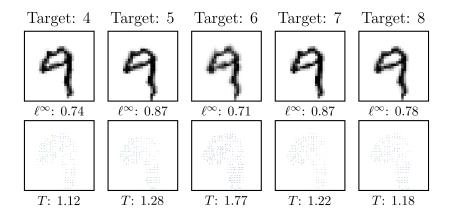
Example: MNIST with CNN



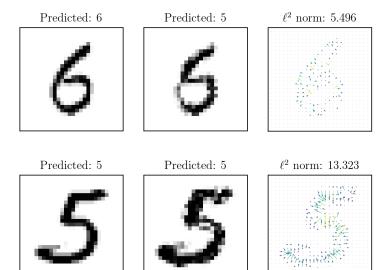
Example: Targeted attack on MNIST with CNN



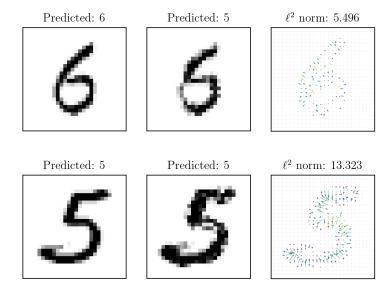
Example cont'd



Example: MNIST with scattering network



Example: MNIST with scattering network



Here: 2 predefined(!) layers + 1 fully-connected layer + SVM.

Results for ADef

Results for ADef

Three different networks:

- ▶ MNIST: convolutional neural network
- ▶ ImageNet (ILSVRC2012): Inception-v3
- ► ImageNet (ILSVRC2012): ResNet-101

Results for ADef

Three different networks:

- ▶ MNIST: convolutional neural network
- ▶ ImageNet (ILSVRC2012): Inception-v3

► ImageNet (ILSVRC2012): ResNet-101

Model	Accuracy	ADef success	Avg. $\#$ iterations
MNIST-CNN	99.41%	99.90%	9.779
Inception-v3	77.56%	98.94%	4.050
ResNet-101	76.97%	99.78%	4.176

Deformations are small

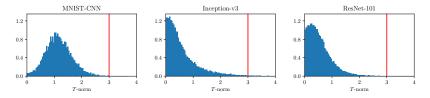


Figure: The (normalized) distribution of $\|\tau\|_{T}$ from the experiment. Deformations that fall to the left of the vertical line at $\varepsilon = 3$ are considered successful.

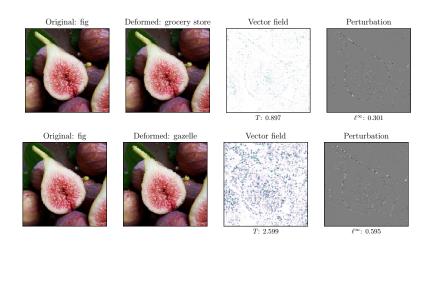
Example: ImageNet

Red fox

#### +	11111	: 111		11	15	55	27.	11	
1111 7			***	**	4.5	**			- 4
· · · · · ·	BY + AA+		644	Q 2	4.5	2.3	11		11
221	Reason.		222	2.7	2.5	- 1	**	• •	11
1111	1.22223		***		2.5		•••	• •	
11111000				11		1.1	1.1	11	2.2
11111266				1.5	4.7	C	111		
1.1.1.2.2.2.2.2	1000			À À	4.4	Ê.	122		с.
168000			4.4	4.4	κ.,				2.1
******			+ 5.4	4.		- 94	-	4.4	
			***			-	-	4	
						**	MAN N	344	
	1		C				-	24	111
1 1 1 1 1 1	1222111	· · · ·	111	11	11		- 25	÷.	
	500× 11	. A .		11				÷.,	
A. A. A. A. M.	2448				2.2	~			
	TARTES				4.4	1.			
						14.			4.4
	2 1 1 1 1 1 1	· · · ·	1						1
			11.		1.				
· · · · · · ·	A							• •	
	A 1 4 4 4 4 7				٠.				
11.5.5	1 1 1 1 1 1 1 1 1								
		. : : :							- 1
				1	÷.,				
				. 1					

Shopping cart

Untargeted vs. targeted attack



Attack on adversarially trained networks

Model	Adv. training	Accuracy	PGD success	ADef success
MNIST-A	PGD	98.36%	5.81%	6.67%
	ADef	98.95%	100.00%	54.16%
MNIST-B	PGD	98.74%	5.84%	20.35%
	ADef	98.79%	100.00%	45.07%

Conclusions

- ► ADef: DNN can be fooled by adversarial deformations
- Defenses using deformations?
- Relevance for inverse problems

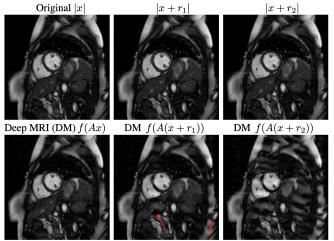


Figure: V. Antun, F. Renna, C. Poon, B. Adcock, A.C. Hansen, 2019

Summer School on Applied Harmonic Analysis and Machine Learning

Genoa, September 9-13, 2019

Home Outline Schedule Info Registration

[~] Three minicourses on Signal Analysis and Big Data

School speakers:

Rima Alaifari (ETH Zurich) Gabriel Peyré (École Normale Supérieure, Paris) José Luis Romero (University of Vienna)

Workshop speakers:

Massimo Fornasier (Technical University of Munich) Anders Hansen (University of Cambridge)

Organizers:

Giovanni S. Alberti Filippo De Mari Ernesto De Vito Lorenzo Rosasco Matteo Santacesaria Silvia Villa **Sponsors:**

