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ImageNet Large Scale Visual Recognition Challenge results
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teams had varying success.
Every team got at least 25%

In 2017, 29 of 38

teams got less than

wrong.
In 2012, the team to first use
deep learning was the only
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Adversarial attacks

» State of the art image classification is achieved by deep neural
networks (DNNss).
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Adversarial attacks

» State of the art image classification is achieved by deep neural
networks (DNNss).

» Weakness: Adversarial examples — slight perturbations to
input can lead to misclassification (Szegedy et al 2013).

» Gap between human and machine perception.

» Possible malicious attacks to fool classifiers. Defenses???
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Spot the difference
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Spot the difference

Original: ptarmigan Perturbation

- 1

Deformed: partridge

£:0.027
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Image classifiers

» Grayscale square images of P = w? pixels are vectors in
X ‘= RWXw o~ RP
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Image classifiers

» Grayscale square images of P = w? pixels are vectors in
X ‘= RWXw o~ RP

» A classifier of X into L > 2 categories is a mapping

K:X—{1,...,L}.

» Implemented by

K(x) = arg max F(x)
k=1,...,L

for some mapping F : X — R’ (e.g. a neural network).
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Structure of DNNs

Input Hidden Output
layer layer layer

[
Input #1 —
@
Input #2 —
.—>.*> Output
Input #3 —
®
Input #4 —
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Neural networks

A feedforward neural network of depth D is a mapping
F=FPoFPo. oFt
where
Fd:RM-1 5 R, x5 p(Wx + b%)

for some W9 € R"*na-1 pd ¢ R and activation function
p R — R applied element-wise to Wx + b9.
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Neural networks

A feedforward neural network of depth D is a mapping
F=FPoFPo. oFt
where
Fd:RM-1 5 R, x5 p(Wx + b%)

for some W9 € R"*na-1 pd ¢ R and activation function
p R — R applied element-wise to Wx + b9.

» The entries of the matrices WY and the vectors b9 are the
free parameters and are learned during training.

» In practice: many layers and |[W9|| >1 — stability
unclear
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Training

Given labeled data
(xj, ) e X x{1,...,L}, j=1,....m

find F : X — RL that captures the distribution.
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Training

Given labeled data
(xj, ) e X x{1,...,L}, j=1,....m

find F : X — RL that captures the distribution. For example by
minimizing the empirical risk

m

m 1
R(F, (5, )jZ0) = — > J(F.x. 1)

Jj=1

where J is some loss function.
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Adversarial perturbations

» Let x € X be a correctly classified image with label / = KC(x).
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Adversarial perturbations

» Let x € X be a correctly classified image with label / = KC(x).
» Look for another image y close to x that is misclassified, i.e.
» adversarial perturbation r = y — x such that ||r|| is small and

> K(y) # 1.

» Universal perturbations:
https://www.youtube.com/watch?v=jhOubyheOrc

» Adversarial patch:
https://www.youtube.com/watch?v=i1sp4X57TL4
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DeepFool algorithm
S. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, 2015

Let L = argmax F be a trained classifier, let x € X be an image
and / = K(x). The following procedure searches for y with

K(y) # I
» Choose a target label k # /.
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and / = K(x). The following procedure searches for y with

K(y) # I
» Choose a target label k # /.
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and set X = x +r.

13/31



DeepFool algorithm
S. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, 2015

Let L = argmax F be a trained classifier, let x € X be an image
and / = K(x). The following procedure searches for y with

K(y) # I
» Choose a target label k # /.
» Set f := Fx — F;: need to have f(y) > 0.
» Since f(x + r) = f(x) + Vf(x) - r, define the perturbation
f
r=— 0 gr(y
IVE
and set X = x+r.
» If IC(X) # I, then we are successful. Otherwise, start at the
top with x replaced by X.

13/31
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S. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, 2015

Let L = argmax F be a trained classifier, let x € X be an image
and / = K(x). The following procedure searches for y with

K(y) # I
» Choose a target label k # /.
» Set f := Fx — F;: need to have f(y) > 0.
» Since f(x + r) = f(x) + Vf(x) - r, define the perturbation
P (T
IVE
and set X = x+r.
» If IC(X) # I, then we are successful. Otherwise, start at the
top with x replaced by X.
The target label kK may be selected at each iteration to minimize

Ir]l-
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Deformations

» Model images as elements of the space

X =1%([0,1)?) = {x: [0,1*> = R : / x(s)|? ds < +o0}
[0.1]2

15/31



Deformations

» Model images as elements of the space

X =1%([0,1)?) = {x: [0,1*> = R : / x(s)|? ds < +o0}
[0.1]2

» Given a vector field 7 : [0,1]?> — R?, the deformed image is

xr(s) = x(s + 7(s))-

15/31



Deformations

» Model images as elements of the space

X =1%([0,1)?) = {x: [0,1*> = R : / x(s)|? ds < +o0}
[0.1]2

» Given a vector field 7 : [0,1]?> — R?, the deformed image is

xr(s) = x(s + 7(s))-

» In this context, the distance between x and x; is not well
quantified by a norm of x — x;

15/31



Deformations

» Model images as elements of the space

X =1%([0,1)?) = {x: [0,1*> = R : / x(s)|? ds < +o0}
[0.1]2

» Given a vector field 7 : [0,1]?> — R?, the deformed image is
x(s) = x(s + 7(s)).

» In this context, the distance between x and x; is not well
quantified by a norm of x — x;

» Instead, we measure it with a norm on 7:

177 = 7l egoapy = sup_ I7(5)la
s€[0,1]?
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Examples of deformations

xi(s) = x(s+ 7(5))

Original Translation by (—2,1) Rotation by 10° Deformation w.r.t. 7
£2°: 1.00 £2:0.98 £2: 1.00
T:2.24 T: 3.33 T:1.25
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ADef: constructing adversarial deformations
Let IC = argmax F be a classifier, let x € X = L%([0,1]?) be an
image and /| = K(x). Goal: Find small T s.t. | # K(x;).
> Let k # | be a target label
» Set g: 7 — Fi(x;) — Fi(x;), search for 7 s.t. g(7) >0
» By linear approximation
g(7) ~ g(0) + (Dog)r,

with (Fréchet) derivative

(Dog)T = / a(s)-7(s)ds, a(s) = (DxFk—DyxF)(s)Vx(s).

» Solve (Dog)T = —g(0) in least-squares sense:

(0)
7(s) = - a(s)
Tl g0

» Repeat until K(x(M) # [ for x("(s) = x("=D(s + 7(")(s)).
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MNIST database
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» 60 000 training images

» 10 000 test images

> 28 x 28 pixels
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ILSVRC database (ImageNet)

» 1 000 image categories
(classes)

» 1.2 million training images,
50 000 validation images

» 100 000 test images
> 256 x 256 pixels

Flgu re: © Andrej Karpathy
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Example: MNIST with CNN

Predicted: 6 Predicted: 5 ¢ norm: 2.536
Predicted: 5 Predicted: 3 ¢ norm: 6.306
o
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Example: Targeted attack on MNIST with CNN

Original  Target: 0 Target: 1 Target: 2 Target: 3
£°°: 0.71 £°°: 0.77 £°: 0.81 £°: 0.74
T: 1.52 T: 1.56 T:1.18 T: 0.90
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Example cont'd

Target: 4 Target: 5

Target: 6 Target: 7 Target: 8

£°°: 0.74

£°°: 0.87

£°°: 0.71

£°°: 0.87

£°°: 0.78

T:1.12

T:1.28

T: 1.77

T:1.22

T:1.18

23/31



Example: MNIST with

Predicted: 6

scattering network

Predicted: 5

¢ norm: 5.496

Predicted: 5

Predicted: 5

¢? norm: 13.323
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Example: MNIST with scattering network

Predicted: 6 Predicted: 5 ¢ norm: 5.496

Predicted: 5 Predicted: 5 ¢? norm: 13.323

Here: 2 predefined(!) layers + 1 fully-connected layer + SVM.
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Results for ADef
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Results for ADef

Three different networks:
» MNIST: convolutional neural network
» ImageNet (ILSVRC2012): Inception-v3
» ImageNet (ILSVRC2012): ResNet-101
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Results for ADef

Three different networks:

» MNIST: convolutional neural network

» ImageNet (ILSVRC2012): Inception-v3

» ImageNet (ILSVRC2012): ResNet-101

Model Accuracy | ADef success | Avg. # iterations
MNIST-CNN | 99.41% 99.90% 9.779
Inception-v3 | 77.56% 98.94% 4.050
ResNet-101 | 76.97% 99.78% 4176
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Deformations are small

ResNet-101

MNIST-CNN Inception-v3
1.2 1.2
0.8 0.8
0.4 0.4
0.0 0.0
0 1 2 3 4 0 1 2 3 4 2 3 4
T-norm T-norm T-norm

Figure: The (normalized) distribution of |7/ from the experiment.
Deformations that fall to the left of the vertical line at ¢ = 3 are

considered successful.
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Example: ImageNet

Shopping cart

Red fox

27/31



Untargeted vs. targeted attack

Original: fig Deformed: grocery store Vector field

T: 0.897

Vector field

Perturbation

£7°:0.301

Perturbation
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Attack on adversarially trained networks

Model Adv. training Accuracy PGD success ADef success

PGD 9836%  5.81% 6.67%
MNISTA  Apef 989056  100.00% 54.16%
PGD 08.74%  5.84% 20.35%

MNIST-B - Apef 98.79%  100.00% 45.07%
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Conclusions

» ADef: DNN can be fooled by adversarial deformations
» Defenses using deformations?
» Relevance for inverse problems

Original |z| z 47 |z 47

Figure: V. Antun, F. Renna, C. Poon, B. Adcock, A.C. Hansen, 2019
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Summer School on Applied Harmonic Analysis and Machine Learning

Genoa, September 9-13, 2019

[~] Three minicourses on Signal Analysis and Big Data

School speakers: Organizers:

Rima Alaifari (ETH Zurich) Giovanni S. Alberti

Gabriel Peyré (Ecole Normale Supérieure, Paris) Filippo De Mari

José Luis Romero (University of Vienna) Ernesto De Vito
Lorenzo Rosasco

Workshop speakers: Matteo Santacesaria
Silvia Villa

Massimo Fornasier (Technical University of Munich)
Anders Hansen (University of Cambridge)

Sponsors:

DIMA DIMA
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