
Adversarial deformations for DNNs

Giovanni S. Alberti

Department of Mathematics, University of Genoa

May 27, 2019

1 / 31



Joint work

Figure: Rima Alaifari
ETH Zürich

Figure: Tandri Gauksson
ETH Zürich

R. Alaifari, G. S. A. and T. Gauksson, ADef: an Iterative Algorithm
to Construct Adversarial Deformations, ICLR 2019

2 / 31



Contents

Adversarial perturbations

Adversarial deformations

Experiments

3 / 31



4 / 31



Adversarial attacks

I State of the art image classification is achieved by deep neural
networks (DNNs).

I Weakness: Adversarial examples — slight perturbations to
input can lead to misclassification (Szegedy et al 2013).

I Gap between human and machine perception.

I Possible malicious attacks to fool classifiers. Defenses???

5 / 31



Adversarial attacks

I State of the art image classification is achieved by deep neural
networks (DNNs).

I Weakness: Adversarial examples — slight perturbations to
input can lead to misclassification (Szegedy et al 2013).

I Gap between human and machine perception.

I Possible malicious attacks to fool classifiers. Defenses???

5 / 31



Adversarial attacks

I State of the art image classification is achieved by deep neural
networks (DNNs).

I Weakness: Adversarial examples — slight perturbations to
input can lead to misclassification (Szegedy et al 2013).

I Gap between human and machine perception.

I Possible malicious attacks to fool classifiers.

Defenses???

5 / 31



Adversarial attacks

I State of the art image classification is achieved by deep neural
networks (DNNs).

I Weakness: Adversarial examples — slight perturbations to
input can lead to misclassification (Szegedy et al 2013).

I Gap between human and machine perception.

I Possible malicious attacks to fool classifiers. Defenses???

5 / 31



Spot the difference

6 / 31



Spot the difference

Original: ptarmigan Deformed: partridge

`∞: 0.027

Perturbation

7 / 31



Image classifiers

I Grayscale square images of P = w2 pixels are vectors in
X := Rw×w ∼= RP .

I A classifier of X into L ≥ 2 categories is a mapping

K : X → {1, . . . , L}.

I Implemented by

K(x) = arg max
k=1,...,L

Fk(x)

for some mapping F : X → RL (e.g. a neural network).

8 / 31



Image classifiers

I Grayscale square images of P = w2 pixels are vectors in
X := Rw×w ∼= RP .

I A classifier of X into L ≥ 2 categories is a mapping

K : X → {1, . . . , L}.

I Implemented by

K(x) = arg max
k=1,...,L

Fk(x)

for some mapping F : X → RL (e.g. a neural network).

8 / 31



Image classifiers

I Grayscale square images of P = w2 pixels are vectors in
X := Rw×w ∼= RP .

I A classifier of X into L ≥ 2 categories is a mapping

K : X → {1, . . . , L}.

I Implemented by

K(x) = arg max
k=1,...,L

Fk(x)

for some mapping F : X → RL

(e.g. a neural network).

8 / 31



Image classifiers

I Grayscale square images of P = w2 pixels are vectors in
X := Rw×w ∼= RP .

I A classifier of X into L ≥ 2 categories is a mapping

K : X → {1, . . . , L}.

I Implemented by

K(x) = arg max
k=1,...,L

Fk(x)

for some mapping F : X → RL (e.g. a neural network).

8 / 31



Structure of DNNs

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

9 / 31



Neural networks

Definition

A feedforward neural network of depth D is a mapping

F = FD ◦ FD−1 ◦ . . . ◦ F 1

where

F d : Rnd−1 → Rnd , x 7→ ρ(Wdx + bd)

for some Wd ∈ Rnd×nd−1 , bd ∈ Rnd and activation function
ρ : R→ R applied element-wise to Wdx + bd .

I The entries of the matrices Wd and the vectors bd are the
free parameters and are learned during training.

I In practice: many layers and ‖Wd‖ > 1 −→ stability
unclear

10 / 31



Neural networks

Definition

A feedforward neural network of depth D is a mapping

F = FD ◦ FD−1 ◦ . . . ◦ F 1

where

F d : Rnd−1 → Rnd , x 7→ ρ(Wdx + bd)

for some Wd ∈ Rnd×nd−1 , bd ∈ Rnd and activation function
ρ : R→ R applied element-wise to Wdx + bd .

I The entries of the matrices Wd and the vectors bd are the
free parameters and are learned during training.

I In practice: many layers and ‖Wd‖ > 1 −→ stability
unclear

10 / 31



Neural networks

Definition

A feedforward neural network of depth D is a mapping

F = FD ◦ FD−1 ◦ . . . ◦ F 1

where

F d : Rnd−1 → Rnd , x 7→ ρ(Wdx + bd)

for some Wd ∈ Rnd×nd−1 , bd ∈ Rnd and activation function
ρ : R→ R applied element-wise to Wdx + bd .

I The entries of the matrices Wd and the vectors bd are the
free parameters and are learned during training.

I In practice: many layers and ‖Wd‖ > 1 −→ stability
unclear

10 / 31



Training

Given labeled data

(xj , lj) ∈ X × {1, . . . , L}, j = 1, . . . ,m

find F : X → RL that captures the distribution.

For example by
minimizing the empirical risk

R(F , (xj , lj)
m
j=1) =

1

m

m∑
j=1

J(F , xj , lj)

where J is some loss function.

11 / 31



Training

Given labeled data

(xj , lj) ∈ X × {1, . . . , L}, j = 1, . . . ,m

find F : X → RL that captures the distribution. For example by
minimizing the empirical risk

R(F , (xj , lj)
m
j=1) =

1

m

m∑
j=1

J(F , xj , lj)

where J is some loss function.

11 / 31



Adversarial perturbations

I Let x ∈ X be a correctly classified image with label l = K(x).

I Look for another image y close to x that is misclassified, i.e.
I adversarial perturbation r = y − x such that ‖r‖ is small and
I K(y) 6= l .

I Universal perturbations:
https://www.youtube.com/watch?v=jhOu5yhe0rc

I Adversarial patch:
https://www.youtube.com/watch?v=i1sp4X57TL4

12 / 31

https://www.youtube.com/watch?v=jhOu5yhe0rc
https://www.youtube.com/watch?v=i1sp4X57TL4


Adversarial perturbations

I Let x ∈ X be a correctly classified image with label l = K(x).

I Look for another image y close to x that is misclassified, i.e.

I adversarial perturbation r = y − x such that ‖r‖ is small and
I K(y) 6= l .

I Universal perturbations:
https://www.youtube.com/watch?v=jhOu5yhe0rc

I Adversarial patch:
https://www.youtube.com/watch?v=i1sp4X57TL4

12 / 31

https://www.youtube.com/watch?v=jhOu5yhe0rc
https://www.youtube.com/watch?v=i1sp4X57TL4


Adversarial perturbations

I Let x ∈ X be a correctly classified image with label l = K(x).

I Look for another image y close to x that is misclassified, i.e.
I adversarial perturbation r = y − x such that ‖r‖ is small and

I K(y) 6= l .

I Universal perturbations:
https://www.youtube.com/watch?v=jhOu5yhe0rc

I Adversarial patch:
https://www.youtube.com/watch?v=i1sp4X57TL4

12 / 31

https://www.youtube.com/watch?v=jhOu5yhe0rc
https://www.youtube.com/watch?v=i1sp4X57TL4


Adversarial perturbations

I Let x ∈ X be a correctly classified image with label l = K(x).

I Look for another image y close to x that is misclassified, i.e.
I adversarial perturbation r = y − x such that ‖r‖ is small and
I K(y) 6= l .

I Universal perturbations:
https://www.youtube.com/watch?v=jhOu5yhe0rc

I Adversarial patch:
https://www.youtube.com/watch?v=i1sp4X57TL4

12 / 31

https://www.youtube.com/watch?v=jhOu5yhe0rc
https://www.youtube.com/watch?v=i1sp4X57TL4


Adversarial perturbations

I Let x ∈ X be a correctly classified image with label l = K(x).

I Look for another image y close to x that is misclassified, i.e.
I adversarial perturbation r = y − x such that ‖r‖ is small and
I K(y) 6= l .

I Universal perturbations:
https://www.youtube.com/watch?v=jhOu5yhe0rc

I Adversarial patch:
https://www.youtube.com/watch?v=i1sp4X57TL4

12 / 31

https://www.youtube.com/watch?v=jhOu5yhe0rc
https://www.youtube.com/watch?v=i1sp4X57TL4


DeepFool algorithm
S. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, 2015

Let K = arg maxF be a trained classifier, let x ∈ X be an image
and l = K(x). The following procedure searches for y with
K(y) 6= l :

I Choose a target label k 6= l .

I Set f := Fk − Fl : need to have f (y) > 0.

I Since f (x + r) ≈ f (x) +∇f (x) · r , define the perturbation

r = − f (x)

‖∇f (x)‖2
∇f (x)

and set x̂ = x + r .

I If K(x̂) 6= l , then we are successful. Otherwise, start at the
top with x replaced by x̂ .

The target label k may be selected at each iteration to minimize
‖r‖.

13 / 31



DeepFool algorithm
S. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, 2015

Let K = arg maxF be a trained classifier, let x ∈ X be an image
and l = K(x). The following procedure searches for y with
K(y) 6= l :

I Choose a target label k 6= l .

I Set f := Fk − Fl : need to have f (y) > 0.

I Since f (x + r) ≈ f (x) +∇f (x) · r , define the perturbation

r = − f (x)

‖∇f (x)‖2
∇f (x)

and set x̂ = x + r .

I If K(x̂) 6= l , then we are successful. Otherwise, start at the
top with x replaced by x̂ .

The target label k may be selected at each iteration to minimize
‖r‖.

13 / 31



DeepFool algorithm
S. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, 2015

Let K = arg maxF be a trained classifier, let x ∈ X be an image
and l = K(x). The following procedure searches for y with
K(y) 6= l :

I Choose a target label k 6= l .

I Set f := Fk − Fl : need to have f (y) > 0.

I Since f (x + r) ≈ f (x) +∇f (x) · r , define the perturbation

r = − f (x)

‖∇f (x)‖2
∇f (x)

and set x̂ = x + r .

I If K(x̂) 6= l , then we are successful. Otherwise, start at the
top with x replaced by x̂ .

The target label k may be selected at each iteration to minimize
‖r‖.

13 / 31



DeepFool algorithm
S. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, 2015

Let K = arg maxF be a trained classifier, let x ∈ X be an image
and l = K(x). The following procedure searches for y with
K(y) 6= l :

I Choose a target label k 6= l .

I Set f := Fk − Fl : need to have f (y) > 0.

I Since f (x + r) ≈ f (x) +∇f (x) · r , define the perturbation

r = − f (x)

‖∇f (x)‖2
∇f (x)

and set x̂ = x + r .

I If K(x̂) 6= l , then we are successful. Otherwise, start at the
top with x replaced by x̂ .

The target label k may be selected at each iteration to minimize
‖r‖.

13 / 31



DeepFool algorithm
S. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, 2015

Let K = arg maxF be a trained classifier, let x ∈ X be an image
and l = K(x). The following procedure searches for y with
K(y) 6= l :

I Choose a target label k 6= l .

I Set f := Fk − Fl : need to have f (y) > 0.

I Since f (x + r) ≈ f (x) +∇f (x) · r , define the perturbation

r = − f (x)

‖∇f (x)‖2
∇f (x)

and set x̂ = x + r .

I If K(x̂) 6= l , then we are successful. Otherwise, start at the
top with x replaced by x̂ .

The target label k may be selected at each iteration to minimize
‖r‖.

13 / 31



Contents

Adversarial perturbations

Adversarial deformations

Experiments

14 / 31



Deformations

I Model images as elements of the space

X = L2([0, 1]2) = {x : [0, 1]2 → R :

∫
[0,1]2
|x(s)|2 ds < +∞}

I Given a vector field τ : [0, 1]2 → R2, the deformed image is

xτ (s) = x(s + τ(s)).

I In this context, the distance between x and xτ is not well
quantified by a norm of x − xτ

I Instead, we measure it with a norm on τ :

‖τ‖T = ‖τ‖L∞([0,1]2) = sup
s∈[0,1]2

‖τ(s)‖2

15 / 31



Deformations

I Model images as elements of the space

X = L2([0, 1]2) = {x : [0, 1]2 → R :

∫
[0,1]2
|x(s)|2 ds < +∞}

I Given a vector field τ : [0, 1]2 → R2, the deformed image is

xτ (s) = x(s + τ(s)).

I In this context, the distance between x and xτ is not well
quantified by a norm of x − xτ

I Instead, we measure it with a norm on τ :

‖τ‖T = ‖τ‖L∞([0,1]2) = sup
s∈[0,1]2

‖τ(s)‖2

15 / 31



Deformations

I Model images as elements of the space

X = L2([0, 1]2) = {x : [0, 1]2 → R :

∫
[0,1]2
|x(s)|2 ds < +∞}

I Given a vector field τ : [0, 1]2 → R2, the deformed image is

xτ (s) = x(s + τ(s)).

I In this context, the distance between x and xτ is not well
quantified by a norm of x − xτ

I Instead, we measure it with a norm on τ :

‖τ‖T = ‖τ‖L∞([0,1]2) = sup
s∈[0,1]2

‖τ(s)‖2

15 / 31



Deformations

I Model images as elements of the space

X = L2([0, 1]2) = {x : [0, 1]2 → R :

∫
[0,1]2
|x(s)|2 ds < +∞}

I Given a vector field τ : [0, 1]2 → R2, the deformed image is

xτ (s) = x(s + τ(s)).

I In this context, the distance between x and xτ is not well
quantified by a norm of x − xτ

I Instead, we measure it with a norm on τ :

‖τ‖T = ‖τ‖L∞([0,1]2) = sup
s∈[0,1]2

‖τ(s)‖2

15 / 31



Examples of deformations

xτ (s) = x(s + τ(s))

16 / 31



ADef: constructing adversarial deformations

Let K = arg maxF be a classifier, let x ∈ X = L2([0, 1]2) be an
image and l = K(x). Goal: Find small τ s.t. l 6= K(xτ ).

I Let k 6= l be a target label

I Set g : τ 7→ Fk(xτ )− Fl(xτ ), search for τ s.t. g(τ) > 0

I By linear approximation

g(τ) ≈ g(0) + (D0g)τ,

with (Fréchet) derivative

(D0g)τ =

∫
[0,1]2

α(s)·τ(s) ds, α(s) = (DxFk−DxFl)(s)∇x(s).

I Solve (D0g)τ = −g(0) in least-squares sense:

τ(s) = − g(0)

‖α‖2
L2([0,1])

α(s)

I Repeat until K(x (n)) 6= l for x (n)(s) = x (n−1)(s + τ (n)(s)).

17 / 31



ADef: constructing adversarial deformations
Let K = arg maxF be a classifier, let x ∈ X = L2([0, 1]2) be an
image and l = K(x). Goal: Find small τ s.t. l 6= K(xτ ).

I Let k 6= l be a target label

I Set g : τ 7→ Fk(xτ )− Fl(xτ ), search for τ s.t. g(τ) > 0

I By linear approximation

g(τ) ≈ g(0) + (D0g)τ,

with (Fréchet) derivative

(D0g)τ =

∫
[0,1]2

α(s)·τ(s) ds, α(s) = (DxFk−DxFl)(s)∇x(s).

I Solve (D0g)τ = −g(0) in least-squares sense:

τ(s) = − g(0)

‖α‖2
L2([0,1])

α(s)

I Repeat until K(x (n)) 6= l for x (n)(s) = x (n−1)(s + τ (n)(s)).

17 / 31



ADef: constructing adversarial deformations
Let K = arg maxF be a classifier, let x ∈ X = L2([0, 1]2) be an
image and l = K(x). Goal: Find small τ s.t. l 6= K(xτ ).

I Let k 6= l be a target label

I Set g : τ 7→ Fk(xτ )− Fl(xτ ), search for τ s.t. g(τ) > 0

I By linear approximation

g(τ) ≈ g(0) + (D0g)τ,

with (Fréchet) derivative

(D0g)τ =

∫
[0,1]2

α(s)·τ(s) ds, α(s) = (DxFk−DxFl)(s)∇x(s).

I Solve (D0g)τ = −g(0) in least-squares sense:

τ(s) = − g(0)

‖α‖2
L2([0,1])

α(s)

I Repeat until K(x (n)) 6= l for x (n)(s) = x (n−1)(s + τ (n)(s)).

17 / 31



ADef: constructing adversarial deformations
Let K = arg maxF be a classifier, let x ∈ X = L2([0, 1]2) be an
image and l = K(x). Goal: Find small τ s.t. l 6= K(xτ ).

I Let k 6= l be a target label

I Set g : τ 7→ Fk(xτ )− Fl(xτ ), search for τ s.t. g(τ) > 0

I By linear approximation

g(τ) ≈ g(0) + (D0g)τ,

with (Fréchet) derivative

(D0g)τ =

∫
[0,1]2

α(s)·τ(s) ds, α(s) = (DxFk−DxFl)(s)∇x(s).

I Solve (D0g)τ = −g(0) in least-squares sense:

τ(s) = − g(0)

‖α‖2
L2([0,1])

α(s)

I Repeat until K(x (n)) 6= l for x (n)(s) = x (n−1)(s + τ (n)(s)).

17 / 31



ADef: constructing adversarial deformations
Let K = arg maxF be a classifier, let x ∈ X = L2([0, 1]2) be an
image and l = K(x). Goal: Find small τ s.t. l 6= K(xτ ).

I Let k 6= l be a target label

I Set g : τ 7→ Fk(xτ )− Fl(xτ ), search for τ s.t. g(τ) > 0

I By linear approximation

g(τ) ≈ g(0) + (D0g)τ,

with (Fréchet) derivative

(D0g)τ =

∫
[0,1]2

α(s)·τ(s) ds, α(s) = (DxFk−DxFl)(s)∇x(s).

I Solve (D0g)τ = −g(0) in least-squares sense:

τ(s) = − g(0)

‖α‖2
L2([0,1])

α(s)

I Repeat until K(x (n)) 6= l for x (n)(s) = x (n−1)(s + τ (n)(s)).

17 / 31



ADef: constructing adversarial deformations
Let K = arg maxF be a classifier, let x ∈ X = L2([0, 1]2) be an
image and l = K(x). Goal: Find small τ s.t. l 6= K(xτ ).

I Let k 6= l be a target label

I Set g : τ 7→ Fk(xτ )− Fl(xτ ), search for τ s.t. g(τ) > 0

I By linear approximation

g(τ) ≈ g(0) + (D0g)τ,

with (Fréchet) derivative

(D0g)τ =

∫
[0,1]2

α(s)·τ(s) ds, α(s) = (DxFk−DxFl)(s)∇x(s).

I Solve (D0g)τ = −g(0) in least-squares sense:

τ(s) = − g(0)

‖α‖2
L2([0,1])

α(s)

I Repeat until K(x (n)) 6= l for x (n)(s) = x (n−1)(s + τ (n)(s)).

17 / 31



ADef: constructing adversarial deformations
Let K = arg maxF be a classifier, let x ∈ X = L2([0, 1]2) be an
image and l = K(x). Goal: Find small τ s.t. l 6= K(xτ ).

I Let k 6= l be a target label

I Set g : τ 7→ Fk(xτ )− Fl(xτ ), search for τ s.t. g(τ) > 0

I By linear approximation

g(τ) ≈ g(0) + (D0g)τ,

with (Fréchet) derivative

(D0g)τ =

∫
[0,1]2

α(s)·τ(s) ds, α(s) = (DxFk−DxFl)(s)∇x(s).

I Solve (D0g)τ = −g(0) in least-squares sense:

τ(s) = − g(0)

‖α‖2
L2([0,1])

α(s)

I Repeat until K(x (n)) 6= l for x (n)(s) = x (n−1)(s + τ (n)(s)).
17 / 31



Contents

Adversarial perturbations

Adversarial deformations

Experiments

18 / 31



MNIST database

I 60 000 training images

I 10 000 test images

I 28× 28 pixels

19 / 31



ILSVRC database (ImageNet)

Figure: c© Andrej Karpathy

I 1 000 image categories
(classes)

I 1.2 million training images,
50 000 validation images

I 100 000 test images

I 256× 256 pixels

20 / 31



Example: MNIST with CNN

21 / 31



Example: Targeted attack on MNIST with CNN

22 / 31



Example cont’d

23 / 31



Example: MNIST with scattering network

Here: 2 predefined(!) layers + 1 fully-connected layer + SVM.

24 / 31



Example: MNIST with scattering network

Here: 2 predefined(!) layers + 1 fully-connected layer + SVM.
24 / 31



Results for ADef

Three different networks:

I MNIST: convolutional neural network

I ImageNet (ILSVRC2012): Inception-v3

I ImageNet (ILSVRC2012): ResNet-101

Model Accuracy ADef success Avg. # iterations

MNIST-CNN 99.41% 99.90% 9.779

Inception-v3 77.56% 98.94% 4.050

ResNet-101 76.97% 99.78% 4.176

25 / 31



Results for ADef

Three different networks:

I MNIST: convolutional neural network

I ImageNet (ILSVRC2012): Inception-v3

I ImageNet (ILSVRC2012): ResNet-101

Model Accuracy ADef success Avg. # iterations

MNIST-CNN 99.41% 99.90% 9.779

Inception-v3 77.56% 98.94% 4.050

ResNet-101 76.97% 99.78% 4.176

25 / 31



Results for ADef

Three different networks:

I MNIST: convolutional neural network

I ImageNet (ILSVRC2012): Inception-v3

I ImageNet (ILSVRC2012): ResNet-101

Model Accuracy ADef success Avg. # iterations

MNIST-CNN 99.41% 99.90% 9.779

Inception-v3 77.56% 98.94% 4.050

ResNet-101 76.97% 99.78% 4.176

25 / 31



Deformations are small

0 1 2 3 4

T -norm

0.0

0.4

0.8

1.2

MNIST-CNN

0 1 2 3 4

T -norm

0.0

0.4

0.8

1.2

Inception-v3

0 1 2 3 4

T -norm

0.0

0.4

0.8

1.2

ResNet-101

Figure: The (normalized) distribution of ‖τ‖T from the experiment.
Deformations that fall to the left of the vertical line at ε = 3 are
considered successful.

26 / 31



Example: ImageNet

Red fox Shopping cart

27 / 31



Untargeted vs. targeted attack

Original: fig Deformed: grocery store

T : 0.897

Vector field

`∞: 0.301

Perturbation

Original: fig Deformed: gazelle

T : 2.599

Vector field

`∞: 0.595

Perturbation

28 / 31



Attack on adversarially trained networks

29 / 31



Conclusions
I ADef: DNN can be fooled by adversarial deformations
I Defenses using deformations?
I Relevance for inverse problems

Figure: V. Antun, F. Renna, C. Poon, B. Adcock, A.C. Hansen, 2019
30 / 31



31 / 31


	Adversarial perturbations
	Adversarial deformations
	Experiments

